• Title/Summary/Keyword: Replacement Ratio of Aggregate

Search Result 307, Processing Time 0.03 seconds

Behavior of reinforced sustainable concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Shallal, Mustafa S.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.271-284
    • /
    • 2021
  • This study aims to trace the response of twelve one-way sustainable concrete hollow-core slabs made by reducing cement content and using replacement of coarse aggregate by plastic aggregate. The trial mixes comprise the 25, 50, 75, and 100% replacement of natural coarse aggregate. The compressive strength of the resulting lightweight concrete with full replacement of coarse aggregate by plastic aggregate was 28 MPa. These slabs are considered to have a reduced dead weight due to using lightweight aggregate and due to reducing cross-section through using voids. The samples are tested under two verticals line loads. Several parameters are varied in this study such as; nature of coarse aggregate (natural or recycled), slab line load location, the shape of the core, core diameter, flexural reinforcement ratio, and thickness of the slab. Strain gauges are used in the present study to measure the strain of steel in each slab. The test samples were fourteen one-way reinforced concrete slabs. The slab's dimensions are (1000 mm), (600 mm), (200 mm), (length, width, and thickness). The change in the shape of the core from circular to square and the use of (100 mm) side length led to reducing the weight by about (46%). The cracking and ultimate strength is reduced by about (5%-6%) respectively. With similar values of deflection. The mode of failure will remain flexural. It is recognized that when the thickness of the slab changed from (200 mm to 175 mm) the result shows a reduction in cracking and ultimate strength by about (6% and 7%) respectively.

A Study on the Properties of Self-Compacting Concrete Using Ground Calcium Carbonate (중탄산칼슘을 이용한 자기충전형 콘크리트의 특성에 관한 연구)

  • 최연왕;정문영;임흥빈;황윤태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.73-78
    • /
    • 2002
  • This study examines self-compacting of concrete using Ground Calcium Carbonate(GCC) gathering in limestone mine of Banyans district in order to make self-compacting concrete in the range of design strength 300kgf/cm$^2$ and the optimal mix proportion of self-compacting concrete that can use in field structure. The result shows that the optimal GCC replacement ratio is 45$\pm$5% in the normal strength of design strength 300kgf/cm$^2$ and that the volume ratio of the optimal fine aggregate used as the way satisfying both viscosity and compacting ability without separating materials is 46%. The optimal volume ratio of the coarse aggregate considering the economical aspect of concrete is 50%. It is desirable that the optimal mix proportion satisfying self-compacting for replacement of GCC is decided through mix design according to each replacement ratio.

  • PDF

Influence of Mix Factors and Mixing Ratio of Aggregate on the Strength and Water Permeability of Porous Concrete (포러스 콘크리트의 배합요인 및 골재 혼합비율이 강도 및 투수성능에 미치는 영향)

  • 김무한;김규용;백용관
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.91-98
    • /
    • 2000
  • Porous concrete having continuous voids is gaining more interest as an ecological material. It has several useful functions such as water and air permeability, sound absorption, etc. Its strengths are considerably lower than those of conventional concrete due to the large and continuous voids in it. This study has been carried out to investigate the influence of mix factors and mixture proportion of aggregate on the strengths and water permeability of porous concrete. And it has been carried out to investigate the evaluation of void of porous concrete by the ultra-sonic pulse velocity. The results f this study are as follows: 1) The theoretical void ratio has greater influence than any other factor on the strengths and water permeability of porous concrete. And it is a little affected by the replacement proportion of silica-fume and mixture proportion of aggregate. 2) Because the coefficients of correlation between the void ratio and ultra-sonic pulse velocity were relatively high, it will be possible that the void ratio is predicted by the ultra-sonic pulse velocity.

The Study on the Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 다량 사용한 콘크리트의 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.169-176
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment, cold weather environment of curing temperature $5^{\circ}C$. Flash concrete tested slump, air contest, setting and Hardening concrete valuated setting period of form, day of age 3, 7, 28 compression strength in sealing curing. Underwater curing specimen compression strength of age 3. 7, 28day used strength change accordingly fly-ash concrete curing temperature. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Setting test result, fly-ash ratio of replacement higher delay totting time. Same volume of fly-ash ratio of replacement is lower fly-ash ratio of replacement fine aggregate delay setting time. Setting test in curing temperature $35^{\circ}C$ over twice fast setting in curing temperature $20^{\circ}C$ and all specimen setting delay in curing temperature $5^{\circ}C$. F40 specimen end of setting about 30 time. (2) Experiment result age 28day compression strength more fisher plan concrete then standard environment in curing temperature $20^{\circ}C$, cold weather environment in curing temperature $5^{\circ}C$, most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$ replacement binder 25%, fine aggregate 15%. (3) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

Characterization of Compressive Strength and Elastic Modulus of Recycled Aggregate Concrete with Respect to Replacement Ratios (순환골재 치환율에 따른 순환골재콘크리트의 압축강도 및 탄성계수 특성)

  • Sim, Jongsung;Park, Cheolwoo;Park, Sung Jae;Kim, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.213-218
    • /
    • 2006
  • As a manufacturing process of recycled aggregate improves the quality of recycled aggregate shall be sufficient enough to be used for structural concrete. This study characterized compressive strength and elastic modulus of concrete that used recycled coarse and fine aggregate. Before the strength tests, the fundamental characteristics of recycled aggregate were preliminarily analyzed and the recycled aggregate satisfied the class 1 requirements in KS F 2573. As the replacement ratio increased, the compressive strength and elastic modulus of recycled aggregate concrete decreased. When the coarse and fine aggregates were completely replaced with the recycled, the compressive strength and elastic modulus were decreased by 13% and 31%, respectively. Based on the test results, this study suggests equations for predicting the compressive strength and elastic modulus of the recycled aggregate concrete with respect to the replacement ratio. The values from the equations were in good agreement with the test data from this study and others.

Evaluation on the Chloride Ion Diffusion Coefficient of Mortar Depending on Replacement Ratio of Recycled Fine Aggregate (순환잔골재 치환율에 따른 모르타르의 염화물이온확산계수 평가)

  • Lee, Sang-Yun;Yoo, Jae-Chul;Kim, Gyu-Yong;Yoon, Min-Ho;Nam, Jeong-Soo;Choi, Hyeong-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.479-485
    • /
    • 2016
  • This paper presents an experimental study conducted to investigate the effect of recycled fine aggregate (RFA) on the mechanical properties and chloride diffusion behavior of mortar. The test results revealed that the addition of RFA plays an important role in the mechanical properties and pore structures of the investigated mortar specimens as well as chloride diffusion behavior. The mechanical properties such as compressive strength and flexural strength of recycled fine aggregate mortar (RFAM) were gradually decreased as RFA replacement ratio increase. The pore structure of RFAM was examined by permeability tests. The RFAM showed a increment in the permeability according to replacement ratio increase of RFA. But the chloride diffusion coefficient of RFAM was almost same up to 50% replacement ratio of RFA due to a chloride binding phenomenon of RFAM which may compensate the higher permeability of RFAM.

Mechanical Properties of Recycled Aggregate Concrete (재생골재 치환률에 따른 콘크리트의 역학적 특성)

  • 이명규;윤건호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.119-122
    • /
    • 1999
  • In this paper, the properties of concrete used recycled aggregate are analyzed. The specimens are manufactured for the compressive strength of 210㎏/㎠ with recycled aggaregate ratio of 0%, 20%, 40%, 60%, 80%, 100%, respectivey. At curing 28days, compressive strength, tensile strength, flexural strength, dry-shrinkage, static modulus of elasticity and poission's ratio have been tested according to replacement ratio of recycled aggregate.

  • PDF

The Strength and Flowing Properties of PVA Fiber Mortar using the Low-carbon Inorganic Composite according the Replacement Ratio of Fine Aggregate (잔골재 치환율별 저탄소 무기결합재를 사용한 PVA섬유 모르타르의 유동 및 강도특성)

  • Park, Jong-Pil;Moon, Ji-Hwon;Kim, Gyu-Yong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.89-90
    • /
    • 2012
  • This study analyzed and compared the flowing and strength properties of mortar depending on the different fine aggregate replacement ratios and whether or not the mixing of PVA fiber was applied. blast furnace slag, red mud, and silica fume that are industrial by-products were used for the analysis. The findings showed that higher replacement level of fine aggregate increased air content while decreasing the table flow. In addition, in case of the compressive strength, Plain mortar and PVA fiber with the replacement ratios of 15% and 30%, respectively showed the greatest strength development.

  • PDF

Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings

  • Yang, You-Fu;Han, Lin-Hai
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.257-284
    • /
    • 2006
  • The behaviour of hollow structural steel (HSS) stub columns and beams filled with normal concrete and recycled aggregate concrete (RAC) under instantaneous loading was investigated experimentally. A total of 40 specimens, including 30 stub columns and 10 beams, were tested. The main parameters varied in the tests were: (1) recycled coarse aggregate (RCA) replacement ratio, from 0 to 50%, (2) sectional type, circular and square. The main objectives of these tests were threefold: first, to describe a series of tests on new composite columns; second, to analyze the influence of RCA replacement ratio on the compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST), and finally, to compare the accuracy of the predicted ultimate strength, bending moment capacity and flexural stiffness of the composite specimens by using the recommendations of ACI318-99 (1999), AIJ (1997), AISC-LRFD (1999), BS5400 (1979), DBJ13-51-2003 (2003) and EC4 (1994).

The Experimental Study on Neutralization Properties of High Volume Fly-Ash Concrete (플라이 애쉬를 다량 치환한 콘크리트의 중성화 특성에 관한 실험적 연구)

  • 백민수;김우상;김종원;김제섭;김성식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.69-74
    • /
    • 2003
  • This study evaluated durability through measurement of substituted test piece's pH degree and experiments of neutralization. Comparing and evaluating cared test piece's pH degrees which we got before the neutralization and after the neutralization. After evaluating neutralization depth through neutralization, evaluating neutralization properties by Fly Ash replacement ratio. pH degree was decreased by cement replacement ratio of Fly Ash. And in the case of substitution of the same amount of Fly Ash, fine aggregate replacement ratio was increased. When the test piece, which had been cared in high temperature, was promoted to neutralization, Among the test piece which was replaced with Fly Ash 40%, the test piece which has high rate of fine aggregate proved opposition of neutralization Through the test, Ⅰ summarized that the test piece cared in high temperature was mostly effected by compress strength, the test piece cared in low temperature was mostly effected by pH degree.

  • PDF