• 제목/요약/키워드: Repeated loading test

검색결과 167건 처리시간 0.03초

반복하중 하에서 부착응력-슬립 거동 실험적 연구 (Experimental Study of Bond Stress-Slip Behavior under Repeated Loading)

  • 오병환;김세훈;김지상;신용석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.215-218
    • /
    • 2003
  • To analyze a bond stress-slip behavior between a reinforcing bar and concrete under repeated loading, pull-out fatigue test was performed. Major variables were repeated stress levels and cycle numbers. Test specimen was taken repeated constant amplitude loading before it was fractured by pull-out test. Increments of bond strength and slip according to repeated stress level and cycle numbers were analyzed. On the basis of test results, Local bond stress-slip relationship under repeated loading were formulated

  • PDF

반복하중을 받는 CFS로 보강된 R/C 보의 휨 강성 평가 (Estimation of Flexural Rigidity of R/C Beam Strengthened with CFS subjected to repeated loadings)

  • 김충호;장종완
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.231-238
    • /
    • 2004
  • R/C교량에서 진행성 균열과 과도한 처짐에 의한 휨 내력의 저하는 차량하중에 의한 동적 반복하중으로부터 발생한다. 이러한 사실은 정적인 단조증가 하중 재하실험으로부터 획득한 자료의 동적 반복하중에서의 확인과 평가의 필요성을 제기한다. 따라서, 본 연구는 CFS로 보강된 R/C보를 단조증가하중 재하실험과 반복하중 재하실험을 동시에 수행하였다. 동적 반복하중 재하실험에 의하여, 단조증가하중 재하실험에 의한 결과의 타당성 및 적합성을 확인하고 반복하중에 의한 모멘트-곡률, 휨 강도의 감소, 균열 및 파괴 특성 등을 평가하였다.

단조 반복하중 하의 탄소섬유시트 보강 RC보의 거동에 관한 연구 (Behavior of RC Beams Strengthened with Carbon Fiber SheetsUnder Repeated Loading)

  • 박정용;김성도;조백순;정진환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권4호
    • /
    • pp.183-193
    • /
    • 2006
  • 본 연구는 탄소섬유시트로 보강된 철근콘크리트 보에 정적하중과 반복하중이 작용할 때의 거동을 다루고 있다. 탄소섬유시트로 보강된 RC보의 정적실험 결과를 기준으로 반복하중 실험을 수행하였다. 반복하중 실험의 변수는 탄소섬유시트 겹수, 단부 U밴드 유무, 반복하중 재하속도 등이 있다. 실험결과를 통해 단조증가하중과 반복하중 하에서의 에너지 소산량과 휨 강성의 변화, 연성특성, 강도특성, 휨 거동 등을 고찰하며, 또한 탄소섬유시트의 파단변형률을 평가하였다. 본 연구에서는 반복하중 실험 결과를 바탕으로 탄소섬유시트로 보강된 RC보의 정적 및 동적 휨 보강 해석 및 설계에 필요한 기초자료를 제시하고자 한다.

반복하중하의 탄소섬유시트 보강보의 거동에 관한 연구 (A study on the behavior of beam strengthened with CFS under repeated loading)

  • 박정용;정진환;김성도;조백순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.627-630
    • /
    • 2004
  • This paper investigates a study on the bending behavior of beam strengthened with CFS under repeated loading. The test specimen consisted of 20cm in width, 40cm in depth, and 15cm in CFS width. We find the strength decrease under repeated loading test comparing with the monotonic incremental loading test.

  • PDF

반복하중을 받는 철근콘크리트 부재의 부착응력-슬립 모델 (Bond Stress-Slip Model of Reinforced Concrete Member under Repeated Loading)

  • 오병환;김세훈;김지상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.104-107
    • /
    • 2004
  • The crack widths of reinforced concrete flexural members are influenced by repetitive fatigue loadings. The bond stress-slip relation is necessary to estimate these crack widths realistically. The purpose of the present study is, therefore, to propose a realistic model for bond stress-slip relation under repeated loading. To this end, several series of tests were conducted to explore the bond-slip behavior under repeated loadings. Three different bond stress levels with various number of load cycles were considered in the tests. The present tests indicate that the bond strength and the slip at peak bond stress are not influenced much by repeated loading if bond failure does not occur. However, the values of loaded slip and residual slip increase with the increase of load cycles. The bond stress after repeated loading approaches the ultimate bond stress under monotonic loading and the increase of bond stress after repeated loading becomes sharper as the number of repeated loads increases. The bond stress-slip relation after repeated loading was derived as a function of residual slip, bond stress level, and the number of load cycles. The models for slip and residual slip were also derived from the present test data. The number of cycles to bond slip failure was derived on the basis of safe fatigue criterion, i.e. maximum slip criterion at ultimate bond stress.

  • PDF

Bending characteristics of corroded reinforced concrete beam under repeated loading

  • Fang, Congqi;Yang, Shuai;Zhang, Zhang
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.773-790
    • /
    • 2013
  • Bending behaviors of corroded reinforced concrete (RC) beams under repeated loading were investigated experimentally. A total of twenty test specimens, including four non-corrosion and sixteen corrosion reinforced concrete beams, were prepared and tested. A numerical model for flexural and cracking behaviors of the beam under repeated loading was also developed. Effects of steel corrosion on reinforced concrete beams regarding cracking, mid-span deflection, stiffness and bearing capacity of corroded beams were studied. The impact of corrosion on bond strength as the key factor was investigated to develop the computational model of flexural capacity. It was shown from the experimental results that the bond strength between reinforcement and concrete had increased for specimen of low corrosion levels, while this effect was changed when the corrosion level was higher. It was indicated that the bearing capacity of corrosion beam increased even at a corrosion level of about 5%.

Behavior of reinforced concrete segmental hollow core slabs under monotonic and repeated loadings

  • Najm, Ibrahim N.;Daud, Raid A.;Al-Azzawi, Adel A.
    • Structural Monitoring and Maintenance
    • /
    • 제6권4호
    • /
    • pp.269-289
    • /
    • 2019
  • This study investigated experimentally the response of thick reinforced concrete specimens having hollow cores with critical parameters. The investigation includes testing of twelve specimens that are solid and hollow-core slab models. Each specimen consists of two pieces, the piece dimensions are (1.2 m) length, (0.3 m) width and (20 cm) thickness tested under both monotonic and repeated loading. The test program is carried out to study the effects of load type, core diameters, core shape, number of cores, and steel fiber existence. Load versus deflection at mid span, failure modes, and crack patterns were obtained during the test. The test results showed that core shape and core number has remarkable influenced on cracking pattern, ultimate load, and failure mode. Also, when considering repeated loading protocol, the ultimate load capacity, load at yielding, and ductility is reduced.

Elucidating the mechanical behavior of ultra-high-strength concrete under repeated impact loading

  • Tai, Yuh-Shiou;Wang, Iau-Teh
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.1-15
    • /
    • 2011
  • The response of concrete to transient dynamic loading has received extensive attention for both civil and military applications. Accordingly, thoroughly understanding the response and failure modes of concrete subjected to impact or explosive loading is vital to the protection provided by fortifications. Reactive powder concrete (RPC), as developed by Richard and Cheyrezy (1995) in recent years, is a unique mixture that is cured such that it has an ultra-high compressive strength. In this work, the concrete cylinders with different steel fiber volume fractions were subjected to repeated impact loading by a split Hopkinson Pressure Bar (SHPB) device. Experimental results indicate that the ability of repeated impact resistance of ultra-high-strength concrete was markedly superior to that of other specimens. Additionally, the rate of damage was decelerated and the energy absorption of ultra-high-strength concrete improved as the steel fiber volume fraction increased.

반복압밀하중을 받는 저유기질토의 압밀특성 (Consolidation Characteristics of Lowly Organic Soil under Repeated Loading)

  • 김재영
    • 한국농공학회지
    • /
    • 제41권2호
    • /
    • pp.61-69
    • /
    • 1999
  • When the repeated loading, such as vehicel etc, acts on soft ground, consolidation behaviors due to repeated loading wil show different from standard one. A series of tests was performed to investigate the characteristics of consolidation of lowly organic soil subjected to repeated loadings. Lowly organic soil with Lig. 23.5% was sampeld in Chonbuk Province and tested using a partially and a fully repeated loadings. From test results it was found that void ration, volume change, consolidation coefficient, permeability and secondary consolidation coefficient were greatly affected according to the repetition number and the load weight. The secondary consolidation coefficient was decreased with increase of the repetition number. The results obtained from this research can be used as basic for the improvement of soft ground.

  • PDF

Shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading

  • Kwak, Kae-Hwan;Park, Jong-Gun
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.301-314
    • /
    • 2001
  • The purpose of this experimental study is to investigate the damage mechanism due to shear-fatigue behavior of high-strength reinforced concrete beams under repeated loading. The relationship between the number of cycles and the deflection or strain, the crack growths and modes of failure with the increase of number of cycles, fatigue strength, and S-N curve were observed through a fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed at 57-66 percent of static ultimate strength for 2 million cycles. The fatigue strength at 2 million cycles from S-N curves was shown as about 60 percent of static ultimate strength. Compared to normal-strength reinforced concrete beams, fatigue capacity of high-strength reinforced concrete beams was similar to or lower than fatigue capacity of normal-strength reinforced concrete beams. Fatigue capacity of normal-strength reinforced concrete beams improved by over 60 percent.