• Title/Summary/Keyword: Renewable energies

Search Result 158, Processing Time 0.024 seconds

Measurement of Electric Power Consumption of Residences in Southeastern Fishing Village of Korea (남해안 어촌마을 주거시설의 전력소비량 실측조사)

  • Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.501-506
    • /
    • 2012
  • To serve basic data for the design of capacity and management of Distributed(or On-site) Power Generation System using renewable energies, this study measured the electric power consumption(hereafter abbreviated as EPC) of 5 families of fishing village located at island in southeastern area of Korea. The results are as following. The maximum monthly average EPC occurred in December or January. Although the total monthly EPC of H family is 2~3 times more than J family, individual monthly EPC of J family is 10~30 % more than H family. Hourly EPC pattern shows that the maximum EPC occurred between 20~24 o'clock in summer season, but it occurred between 18~24 o'clock in winter season. Compared to summer, the height of fluctuation through a day is small. And the EPC patterns of weekdays and weekend estimated as very similar.

Development of the Integrated Fuel Cell Monitoring System (통합 연료전지모니터링 시스템 개발)

  • KIM, HYUNJUN;YEOM, SANGCHUL;AHN, BYUNGKI;KIM, SAEHOON;KUM, YEONGBEOM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.241-246
    • /
    • 2015
  • The interest of New Renewable Energy is increasing globally because of the increment of the uncertainty for the energy's supply and demand, and the increment of the frequency in weather anomaly and its damages. One of the New Renewable Energies, Hydrogen receives attention as the future energy that can deal with global environment regulation. Fuel Cell Electric Vehicle (FCEV) is an environment-friendly vehicle that uses Hydrogen as fuel. The electric power for FCEV is generated by chemical reaction with Oxygen from the air and Hydrogen. Hyundai Motor Company (HMC) has developed a proprietary fuel cell system since 2005. In 2012, HMC is the first car maker that mass-produces the ix35 FCEV to the worldwide such as North America, Europe, etc. In order to develop and improve the FCEV technology, data acquisition and analysis of the driving vehicle information is essential. Therefore, the monitoring system is developed, which is consist of datalogger, Automatic Vehicle Location (AVL) server and main server. Especially, WCDMA technology is integrated into the system which enables the data analysis without any restriction of time and region. The main function of the system is the analysis of the driving pattern and the component durability, and the safety monitoring. As a result, ix35 FCEV has successfully developed by using the developed monitoring system. The system is going to take an advantage of development in the future FCEV technology.

A Study on Configuration of Small Wind Turbines for Maximum Capacity of Wind Power Systems Interconnected With a Building (빌딩 내 최대 풍력발전설비 연계를 위한 소형풍력발전원 구성에 관한 연구)

  • Lee, Yeo-Jin;Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.605-612
    • /
    • 2017
  • One of the biggest environmental issues that our world has been facing is climate change. In order to cope with such environmental issues, the world is putting a great deal of effort into energy conservation. The building sector, in particular, consumes 36% of the energy consumed worldwide and emits considerable amount of greenhouse gases. Therefore, introduction of renewable energies in the building sector is highly recommended. Renewable energy sources that can be utilized in the building sector include sunlight, solar heat, geothermal heat, fuel cells and wind power. The wind power generation system which converts wind energy into electrical energy has advantages in that wind is an unlimited and pollution-free resource. It is suitable to be connected to existing buildings because many years of operational experience and the enhanced stability of the system have made it possible to downsize the electrical generator. In case of existing buildings, it is necessary to consider the live loads of the buildings to connect the wind power generation system. This paper, through the connection of the wind power generation with existing buildings, promotes reduction of greenhouse gas emissions and energy independence by reducing energy consumption in the building sector. In order to connect the wind power generation system with an exciting building, the live load of the building and the area of the rooftop should be considered. The installable model is selected by comparing the live load of the building and the load of the wind power generation system. The maximum number of the wind turbines that can be installed is obtained by considering the separation distance between the wind turbines within the area of the rooftop. Installations are divided into single installations and multiple installations of two different types of wind turbines. After determining the maximum installable number, the optimal model that can achieve the maximum annual power generation will be selected by comparing the respective total annual amount of the power generation of different models.

Environmental Cost and Benefit Analysis Pollutant Reduction Facilities of the using the Emergy (Emergy를 이용한 오염물질 저감시설의 환경 비용/편익 분석)

  • Kim, Jin Lee;Hwang, Ha-Sun;Kim, Sang-Soo;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.591-597
    • /
    • 2013
  • The input emergy of an advanced treatment plant for reducing the 1 kg of TN and TP was estimated 4.14E+14 sej/kg, 5.02E+15 sej/kg, respectively. In addition, the input emergy of constructed wetland for reduction of the 1 kg of TN and TP reduction was estimated to be 2.48E+14 sej/kg, 3.38E+15 sej/kg, respectively. The cost reducing 1 kg of TN and TP for an advanced treatment plant was estimated 197,466 won and 2,388,739 won respectively and constructed wetland was estimated 117,976 won and 1,609,213 won respectively. As a result, All of the emergy source of constructed wetland for reducing non-point source is renewable resource. If we use the constructed wetland, it results in enhancing economic value by reducing of non-point pollution, controlling a flood and providing the habitat of animals or plants. Improving water quality program in the Nakdong River Basin should be changed into an ecological treatment facilities from expansion of the sewage treatment facilities and advanced treatment plant using high cost and non-renewable energies.

Rapid Characterization and Prediction of Biomass Properties via Statistical Techniques

  • Cho, Hyun-Woo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.265-271
    • /
    • 2012
  • The use of renewable energies has been required to diminish the dependency on fossil fuels. As one of clean energy sources biomass has been extensively studied because various biomass resources necessitated rapid characterization of their chemical and physical properties in an on-line or real-time basis. For such an analysis near-infrared (NIR) spectroscopy has been successfully applied because of its non-invasive and informative characteristics. In this work, the applicability of nonlinear chemometric techniques based on biomass near infrared (NIR) data is evaluated for the rapid prediction of ash/char contents in different types of biomass. The prediction results of various prediction models and the effect of using preprocessing methods for NIR data are compared using six types of biomass NIR data. The results showed that nonlinear prediction models yielded better prediction performance than linear ones. It also turned out that by adopting the use of proper preprocessing methods the performance of prediction of biomass properties improved.

Comparison assessment of semi-transparent solar cell for BIPV windows (반투과형 태양전지를 이용한 창호형 BIPV 건물의 환경성능 분석)

  • Chung, Min Hee
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.87-94
    • /
    • 2020
  • To implement the planning of zero-energy buildings, their energy performance must be improved, and renewable energy applications must also be included. To accelerate the use of renewable energies in such buildings, BIPVs should be actively used in windows and on roofs. Window-type BIPVs are being developed in various forms depending on the size, composition, area ratio of the window, specification of glass, and so on. To analyze the applicability of various solar cells as window-type BIPVs, in this study, we evaluated their applicability, at the current development level, by analyzing the indoor illuminance, heat gain and heat loss; the cooling, heating, and lighting energy levels; and the generation performance of the various solar cells. To enhance the future applicability of window type BIPV, we analyze the overall energy performance of the building, according to changes in visible light transmittance and generation efficiency. The main research results are as follows. The area ratios above the standard illuminance, based on the window type and according to the VLT, were in order of low-e glazing, a-Si window, DSSC window, and c-Si window. The heat gain of the semi-transparent solar cell winodw was remarkably low. The energy consumption of buildings was highest in the order of c-Si window, DSSC window, a-Si window, and clear low-e window. However, in the case of including the power generation performance of the solar cell, the energy consumption was found to be high in order of DSSC window, c-Si window, a-Si window, and clear low-e window. In the future, if a window-type BIPV is developed, we believe that improvement in power generation performance and improvement in visible light transmittance will be needed.

A Review on Potential Effects of Installation and Operation of Ground Source Heat Pumps on Soil and Groundwater Environment (지열히트펌프시스템의 설치 및 운영이 토양.지하수에 미치는 영향에 대한 고찰)

  • Jo, Yun-Ju;Lee, Jin-Yong;Lim, Soo-Young;Hong, Gyeong-Pyo
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.22-31
    • /
    • 2009
  • Recently use of renewable energies such as geothermal energy for space heating and cooling is increasing in Korea due to energy crisis and global warming. Ground source heat pump (GSHP) is known as one of the most environment-friendly HVAC (heating, ventilation and air-conditioning) systems in the world. However, some potential effects caused installation and operation of the GSHP systems on soil and groundwater environment are reported. The potential effects are closely related with inappropriate installation, operation and closure of the GSHP systems. In this paper, possible effects of the GSHPs on soil and groundwater environments are reviewed.

An Analysis of the Effects of Fuel-transition in Transportation Sector: Focusing on Business Cars (수송부문 연료전환 효과 분석: 사업용 승용차 부문을 중심으로)

  • Kim, Jae Yeob;Kim, Bia;Park, Myung D.
    • Environmental and Resource Economics Review
    • /
    • v.29 no.4
    • /
    • pp.443-468
    • /
    • 2020
  • Broad effects of fuel-transition in all type of ground transportation have occurred with the help of the advances in electric vehicle (EV) technologies and the increases in EV supply. This research estimates the economic benefit of air environmental improvements, which results from the fuel-transition of high-mileage business cars(taxies) in metropolis. If we consider power production sector for EV operation, some air pollutants will be produced. In this respect, this research takes both the mixture of power sources in power production level and the driving pattern of business cars into account when investigating the economic benefit in air environment resulted from the fuel-transition of business cars(taxies). According to our results, the business cars' fuel transition from LPG to electricity brings about 21.5₩/km (8.6million won/year) of economic benefit in air environment. These results emphasize the necessity and appropriateness of public polices for expanding power production with renewable energies and facilitating EV distribution.

Gravimetric Measurements and Theoretical Calculations of 4-Aminoantipyrine Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution: Comparative Studies

  • Firas F. Sayyid;Ali M. Mustafa;Slafa I. Ibrahim;Mustafa K. Mohsin;Mahdi M. Hanoon;Mohammed H. H. Al-Kaabi;A. A. H. Kadhum;Wan Nor Roslam Wan Isahak;A. A. Al-Amiery
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.73-89
    • /
    • 2023
  • Due to continuous promotion of green alternatives to toxic petrochemicals by government policies, research efforts towards the development of green corrosion inhibitors have intensified recently. The objective of the current work was to develop novel green and sustainable corrosion inhibitors derived from 4-aminoantipyrine to effectively prevent corrosion of mild steel in corrosive environments. Gravimetric methods were used to investigate corrosion inhibition of 4-((furan-2-ylmethylene)amino)antipyrine (FAP) and 4-((pyridin-2-ylmethylene)amino)antipyrine (PAP) for mild steel in 1 M HCl. FAP and PAP were subjected to quantum chemical calculations using density functional theory (DFT). DFT was used to determine the mechanism of mild steel corrosion inhibition using inhibitors tested in HCl. Results demonstrated that these tested inhibitors could effectively inhibit mild steel corrosion in 1.0 M HCl. At 0.0005 M, these inhibitors' efficiencies for FAP and PAP were 93.3% and 96.5%, respectively. The Langmuir adsorption isotherm was obeyed by these inhibitors on the mild steel surface. Values of adsorption free energies, ΔGoads, revealed that FAP followed chemical and physical adsorptions.

A Study on Trends for Development of Wind Turbine Tower (복합재를 이용한 대형 풍력 발전용 타워 기술개발 동향분석)

  • Hong, Cheol-Hyun;Jeong, Jae-Hun;Kang, Byong-Yun;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.50-54
    • /
    • 2012
  • Wind-power generation, which is recently drawing attention as one of renewable energies across the world, has been developed mainly by Europe. As the demand for the wind-power generation rose and the amount of wind-power generation increased, the studies on megawatt-class wind-power system have been active, and the use of composite with such properties as less weight, more strength, anti-corrosion and environment-friendliness has required gradually. In other word, wind turbine tower will be required to be lighter, more reliable and more consistent. Therefore it is necessary to lose weight of the wind turbine tower. This points squarely toward hybrid/composite tower production growing. It is important to note however that hybrid/composite tower production as it is today is flawed and that there are ways to improve greatly on the performance of these towers in manufacturing process and in their in-service performance. Through this, we have some detail on the current process and its advantage of cost and weight of towers.