DOI QR코드

DOI QR Code

Gravimetric Measurements and Theoretical Calculations of 4-Aminoantipyrine Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution: Comparative Studies

  • Firas F. Sayyid (Department of production Engineering and metallurgical, University of technology-Iraq) ;
  • Ali M. Mustafa (Department of production Engineering and metallurgical, University of technology-Iraq) ;
  • Slafa I. Ibrahim (Energy and Renewable Technology Centre, University of Technology) ;
  • Mustafa K. Mohsin (The Supreme National Authority for Accountability and Justic) ;
  • Mahdi M. Hanoon (Department of production Engineering and metallurgical, University of technology-Iraq) ;
  • Mohammed H. H. Al-Kaabi (Basrah University for oil and Gas) ;
  • A. A. H. Kadhum (Al-Ameed University) ;
  • Wan Nor Roslam Wan Isahak (Department of Chemical and Process Engineering, Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia) ;
  • A. A. Al-Amiery (Energy and Renewable Technology Centre, University of Technology)
  • Received : 2022.06.28
  • Accepted : 2022.07.03
  • Published : 2023.04.30

Abstract

Due to continuous promotion of green alternatives to toxic petrochemicals by government policies, research efforts towards the development of green corrosion inhibitors have intensified recently. The objective of the current work was to develop novel green and sustainable corrosion inhibitors derived from 4-aminoantipyrine to effectively prevent corrosion of mild steel in corrosive environments. Gravimetric methods were used to investigate corrosion inhibition of 4-((furan-2-ylmethylene)amino)antipyrine (FAP) and 4-((pyridin-2-ylmethylene)amino)antipyrine (PAP) for mild steel in 1 M HCl. FAP and PAP were subjected to quantum chemical calculations using density functional theory (DFT). DFT was used to determine the mechanism of mild steel corrosion inhibition using inhibitors tested in HCl. Results demonstrated that these tested inhibitors could effectively inhibit mild steel corrosion in 1.0 M HCl. At 0.0005 M, these inhibitors' efficiencies for FAP and PAP were 93.3% and 96.5%, respectively. The Langmuir adsorption isotherm was obeyed by these inhibitors on the mild steel surface. Values of adsorption free energies, ΔGoads, revealed that FAP followed chemical and physical adsorptions.

Keywords

Acknowledgement

The authors are grateful to the Universiti Kebangsaan Malaysia (UKM) for support under project code: GUP-2020-012.

References

  1. F. Bentiss, F. Gassama, D. Barbry, L. Gengembre, H. Vezin, M. Lagrenee, M. Traisnel, Enhanced corrosion resistance of mild steel in molar hydrochloric acid solution by 1, 4-bis (2-pyridyl)-5H-pyridazino [4, 5-b]indole: Electrochemical, theoretical and XPS studies, Applied Surface Science, 252, 2684 (2006). Doi: https://doi.org/10.1016/j.apsusc.2005.03.231
  2. H. Lgaz, S. K. Saha, A. Chaouiki, K. S. Bhat, R. Salghi, P. Banerjee, I. H. Ali, M. I. Khan, I.-M. Chung, Exploring the potential role of pyrazoline derivatives in corrosion inhibition of mild steel in hydrochloric acid solution: Insights from experimental and computational studies, Construction and Building Materials, 233, 117320 (2020). Doi: https://doi.org/10.1016/j.conbuildmat.2019.117320
  3. Ehsani, A.; Nasrollahzadeh, M.; Mahjani, M.G.; Moshrefi, R.; Mostaanzadeh, H. Electrochemical and quantum chemical investigation of inhibitory of 1,4-Ph(OX)2(Ts)2 on corrosion of 1005 aluminum alloy in acidic medium, Journal of Industrial And Engineering Chemistry, 20, 4363 (2014).
  4. A. Dehghani, G. Bahlakeh, B. Ramezanzadeh, M. Ramezanzadeh, Detailed macro-/micro-scale exploration of the excellent active corrosion inhibition of a novel environmentally friendly green inhibitor for carbon steel in acidic environments, Journal of the Taiwan Institute of Chemical Engineeris, 100, 239 (2019). Doi: https://doi.org/10.1016/j.jtice.2019.04.002
  5. Asadi, N.; Ramezanzadeh, M.; Bahlakeh, G.; Ramezanzadeh, B. Utilizing Lemon Balm extract as an effective green corrosion inhibitor for mild steel in 1M HCl solution: A detailed experimental, molecular dynamics, Monte Carlo and quantum mechanics study, Journal of the Taiwan Institute of Chemical Engineers, 95, 252 (2019). Doi: https://doi.org/10.1016/j.jtice.2018.07.011
  6. H. Jafari, K. Sayin, Sulfur Containing Compounds as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution, Transactions of the Indian Institute of Metals, 69, 805 (2016). Doi: https://doi.org/10.1007/s12666-015-0556-2
  7. A. K. Singh, E. E. Ebenso, M. A. Quraishi, Adsorption Behaviour of Cefapirin on Mild Steel in Hydrochloric Acid Solution, International Journal of Electrochemical Science, 7, 2320 (2012).
  8. Y.-S. Choi, J.-J. Shim, J.-G. Kim, Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water, Journal of Alloys and Compounds, 391, 162
  9. D. Li, Y. Feng, Z. Bai, J. Zhu, M. Zheng, Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution, Electrochimica Acta, 52, 7877 (2007). Doi: https://doi.org/10.1016/j.electacta.2007.06.059
  10. C. Liu, R. I. Revilla, Z. Liu, D. Zhang, X. Li, H. Terryn, Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel, Corrosion Science, 129, 82 (2017). Doi: https://doi.org/10.1016/j.corsci.2017.10.001
  11. Q. Ma, Z. Tong, W. Wang, G. Dong, Fabricating robust and repairable superhydrophobic surface on carbon steel by nanosecond laser texturing for corrosion protection, Applied Surface Science, 455, 748 (2018). Doi: https://doi.org/10.1016/j.apsusc.2018.06.033
  12. T. V. Shibaeva, V. Laurinavichyute, G. Tsirlina, A. M. Arsenkin, K. V. Grigorovich, The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions, Corrosion Science, 80, 299 (2014). Doi: https://doi.org/10.1016/j.corsci.2013.11.038
  13. Y. Wang, Z. Jiang, Z. Yao, H. Tang, Microstructure and corrosion resistance of ceramic coating on carbon steel prepared by plasma electrolytic oxidation, Surface Coatings Technology, 204, 1685 (2010). Doi: https://doi.org/10.1016/j.surfcoat.2009.10.023
  14. V. S. Brito, I. Bastos, H. Costa, Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel, Materials & Design 41, 282 (2012). Doi: https://doi.org/10.1016/j.matdes.2012.05.008
  15. X. Chen, C. Chen, H. Xiao, F. Cheng, G. Zhang, G. Yi, Corrosion behavior of carbon nanotubes-Ni composite coating, Surface and Coatings Technology, 191, 351 (2005). Doi: https://doi.org/10.1016/j.surfcoat.2004.04.055
  16. Y. Ye, Z. Liu, W. Liu, D. Zhang, H. Zhao, L. Wang, X. Li, Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel, Chemical Engineering Journal, 348, 940 (2018). Doi: https://doi.org/10.1016/j.cej.2018.02.053
  17. N. A. Negm, N. G. Kandile, E. A. Badr, M. A. Mohammed, Gravimetric and electrochemical evaluation of environmentally friendly nonionic corrosion inhibitors for carbon steel in 1M HCl, Corrosion Science, 65, 94 (2012). Doi: https://doi.org/10.1016/j.corsci.2012.08.002
  18. C. Verma, E. Ebenso, I. Bahadur, I. Obot, M. Quraishi, 5-(Phenylthio)-3H-pyrrole-4-carbonitriles as effective corrosion inhibitors for mild steel in 1 M HCl: Experimental and theoretical investigation, Journal of Molecular Liquids, 212, 209 (2015). Doi: https://doi.org/10.1016/j.molliq.2015.09.009
  19. C. Verma, M. Quraishi, A. Singh, 2-Amino-5-nitro-4, 6-diarylcyclohex-1-ene-1, 3, 3-tricarbonitriles as new and effective corrosion inhibitors for mild steel in 1 M HCl: Experimental and theoretical studies, Journal of Molecular Liquids, 212, 804 (2015). Doi: https://doi.org/10.1016/j.molliq.2015.10.026
  20. D. Daoud, T. Douadi, H. Hamani, S. Chafaa, M. AlNoaimi, Corrosion inhibition of mild steel by two new Sheterocyclic compounds in 1 M HCl: Experimental and computational study, Corrosion Science, 94, 21 (2015). Doi: https://doi.org/10.1016/j.corsci.2015.01.025
  21. R. M. Kubba, A. S. Alag, Experimental and Theoretical Evaluation of new Quinazolinone Derivative as Organic Corrosion Inhibitor for Carbon Steel in 1M HCl Solution, International Journal of Science and Research (IJSR), 6, 1832 (2017). Doi: https://doi.org/10.21275/ART20174699
  22. F. Bentiss, M. Lagrenee, M. Traisnel, J. Hornez, The corrosion inhibition of mild steel in acidic media by a new triazole derivative, Corrosion Science, 41, 789 (1999). Doi: https://doi.org/10.1016/S0010-938X(98)00153-X
  23. R. Baskar, D. Kesavan, M. Gopiraman, K. Subramanian, Corrosion inhibition of mild steel in 1.0M hydrochloric acid medium by new photo-cross-linkable polymers, Progress in Organic Coatings, 77, 836 (2014). Doi:https://doi.org/10.1016/j.porgcoat.2014.01.013
  24. C. Verma, L. O. Olasunkanmi, E. E. Ebenso, M. A. Quraishi, Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: A review, Journal of Molecular Liquids, 251, 100 (2018). Doi: https://doi.org/10.1016/j.molliq.2017.12.055
  25. E. A. Flores, O. Olivares, N. V. Likhanova, M. A. Dominguez-Aguilar, N. Nava, D. Guzman-Lucero, M. Corrales, Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution, Corrosion Science, 53, 3899 (2011). Doi: https://doi.org/10.1016/j.corsci.2011.07.023
  26. A. Dehghani, F. Poshtiban, G. Bahlakeh, B. Ramezanzadeh, Fabrication of metal-organic based complex film based on threevalent samarium ions-[bis (phosphonomethyl) amino] methylphosphonic acid (ATMP) for effective corrosion inhibition of mild steel in simulated seawater, Construction and Building Materials, 239, 117812 (2020). Doi: https://doi.org/10.1016/j.conbuildmat.2019.117812
  27. B. Lin, Y. Zuo, Corrosion inhibition of carboxylate inhibitors with different alkylene chain lengths on carbon steel in an alkaline solution, RSC Advances, 9, 7065 (2019). Doi: https://doi.org/10.1039/C8RA10083G
  28. K. S. Bokati, C. Dehghanian, S. Yari, Corrosion inhibition of copper, mild steel and galvanically coupled copper-mild steel in artificial sea water in presence of 1Hbenzotriazole, sodium molybdate and sodium phosphate, Corrosion Science, 126, 272 (2017). Doi: https://doi.org/10.1016/j.corsci.2017.07.009
  29. M. Finsgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review Corrosion Science, 86, 17 (2014). Doi:https://doi.org/10.1016/j.corsci.2014.04.044
  30. I. B. Onyeachu, M. M. Solomon, S. A. Umoren, I. B. Obot, A. A. Sorour, Corrosion inhibition effect of a benzimidazole derivative on heat exchanger tubing materials during acid cleaning of multistage flash desalination plants, Desalination, 479, 114283 (2020). Doi: https://doi.org/10.1016/j.desal.2019.114283
  31. C. R. Vinodkumar, P. K. Radhakrishnan, Complexes of yttrium and lanthanide perchlorates with 4-N-(2'-furfurylidene)aminoantipyrine, Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 27, 1347 (1997). Doi: https://doi.org/10.1080/00945719708000162
  32. TM0193-2016-SG, Laboratory Corrosion Testing of Metals in Static Chemical Cleaning Solutions at Temperatures below 93 ℃ (200 ℃), NACE International (2000).
  33. L. Guo, J. Tan, S. Kaya, S. Leng, O. Li, F. Zhang, Multidimensional insights into the corrosion inhibition of 3,3- dithiodipropionic acid on Q235 steel in H2SO4 medium: A combined experimental and in silico investigation, Journal of Colloid and Interface Science, 570, 116 (2020). Doi: https://doi.org/10.1016/j.jcis.2020.03.001
  34. B. M. Prasanna, B. M. Praveen, N. Hebbar, Inhibition study of mild steel corrosion in 1 M hydrochloric acid solution by 2-chloro 3-formyl quinoline, International Journal of Industrial Chemistry, 7, 9 (2016). Doi: https://doi.org/10.1007/s40090-015-0064-6
  35. ASTM International, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test, 1-9 (2011).
  36. Koopmans T. Ordering of wave functions and eigenenergies to the individual electrons of an atom, Physica, 1, 104 (1933). Doi: https://doi.org/10.1016/S0031-8914(34)90011-2
  37. M. E. Mashuga, L. O. Olasunkanmi, E. E. Ebenso, Experimental and theoretical investigation of the inhibitory effect of new pyridazine derivatives for the corrosion of mild steel in 1 M HCl, Journal of Molecular Structure, 1136, 127 (2017). Doi: https://doi.org/10.1016/j.molstruc.2017.02.002
  38. E. A. Muller, B. Pollard, H. A. Bechtel, P. van Blerkom, M. B. Raschke, Infrared vibrational nanocrystallography and nanoimaging, Science Advances, 2 e1601006 (2016). Doi: https://doi.org/10.1126/sciadv.1601006
  39. L. Liu, N. Wang, C. Zhu, X. Liu, Y. Zhu, P. Guo, L. Alfilfil, X. Dong, D. Zhang, Y. Han, Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5, Angewandte Chemie International Edition, 59, 819 (2020). Doi: https://doi.org/10.1002/anie.201909834
  40. Tamalmani, K.; Husin, H. Review on Corrosion Inhibitors for Oil and Gas Corrosion Issues, Applied Sciences, 10, 3389 (2020). Doi: https://doi.org/10.3390/app10103389
  41. Alamiery, A. Corrosion inhibition effect of 2-N-phenylamino-5-(3-phenyl-3-oxo-1-propyl)-1, 3, 4-oxadiazole on mild steel in 1 M hydrochloric acid medium: Insight from gravimetric and DFT investigations, Materials Science for Energy Technologies, 4, 398 (2021). Doi: https://doi.org/10.1016/j.mset.2021.09.002
  42. A. A. Alamiery, Anticorrosion effect of thiosemicarbazide derivative on mild steel in 1 M hydrochloric acid and 0.5 M sulfuric Acid: Gravimetrical and theoretical studies, Materials Science for Energy Technologies, 4, 263 (2021). Doi: https://doi.org/10.1016/j.mset.2021.07.004
  43. I. Aziz, I. Annon, M. H. Abdulkareem, M. M. Hanoon, M. H. Alkaabi, L. M. Shaker, A. A. Alamiery, W. N. R. Wan Isahak, and M. S. Takriff, Insights into Corrosion Inhibition Behavior of a 5-Mercapto-1, 2, 4-triazole Derivative for Mild Steel in Hydrochloric Acid Solution: Experimental and DFT Studies, Lubricants, 9, 122 (2021). Doi: https://doi.org/10.3390/lubricants9120122
  44. A. Nahle, R. Salim, F. El Hajjaji, M. R. Aouad, M. Messali, E. Ech-Chihbi, B. Hammouti, M. Taleb, Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: Experimental & theoretical approach. RSC Advances, 11, 4147 (2021). Doi: https://doi.org/10.1039/D0RA09679B
  45. A. Espinoza-Vazquez, F. J. Rodriguez-Gomez, I. K. Martinez-Cruz, D. Angeles-Beltran,Negron-Silva, G.E.; M. Palomar-Pardave, L. L. Romero, D. Perez-Martinez, A. M. Navarrete-Lopez, Adsorption and corrosion inhibition behaviour of new theophylline-triazole-based derivatives for steel in acidic medium, Royal Society Open Science, 6, 181738 (2019). Doi: https://doi.org/10.1098/rsos.181738
  46. I. Merimi, R. Benkaddour, H. Lgaz, N. Rezki, M. Messali, F. Jeffali, H. Oudda, B. Hammouti, Insights into corrosion inhibition behavior of a triazole derivative for mild steel in hydrochloric acid solution, Materialstoday Proceedings, 13, 1008 (2019). Doi: https://doi.org/10.1016/j.matpr.2019.04.066
  47. L. Wang, M. J. Zhu, F. C. Yang, C. W. Gao, Study of a triazole derivative as corrosion inhibitor for mild steel in phosphoric acid solution, International Journal of Corrosion, 2012, 573964 (2012). https://doi.org/10.1155/2012/573964
  48. F. Bentiss, M. Bouanis, B. Mernari, M. Traisnel, H. Vezin, M. Lagrenee, Understanding the adsorption of 4H1, 2, 4-triazole derivatives on mild steel surface in molar hydrochloric acid, Applied Surface Science, 253, 3696 (2007). Doi: https://doi.org/10.1016/j.apsusc.2006.08.001
  49. B. El Mehdi, B. Mernari, M. Traisnel, F. Bentiss, M. Lagrenee, Synthesis and comparative study of the inhibitive effect of some new triazole derivatives towards corrosion of mild steel in hydrochloric acid solution, Materials Chemistry and Physics, 77, 489 (2003). Doi:https://doi.org/10.1016/S0254-0584(02)00085-8
  50. H. H. Hassan, E. Abdelghani, M. A. Amin, Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part I. Polarization and EIS Studies, Electrochimica Acta, 52, 6359 (2007). Doi: https://doi.org/10.1016/j.electacta.2007.04.046
  51. S. Ramesh, S. Rajeswari, Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives, Electrochimica Acta, 49, 811 (2004). Doi:https://doi.org/10.1016/j.electacta.2003.09.035
  52. L. G. Qiu, A. J. Xie, Y. H. Shen, A novel triazole-based cationic gemini surfactant: Synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid, Materials Chemistry and Physics, 91, 269 (2005). Doi: https://doi.org/10.1016/j.matchemphys.2004.11.022
  53. B. D. Mert, M. E. Mert, G. Kardas, B. Yazici, Experimental and theoretical investigation of 3-amino-1, 2, 4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium, Corrosion Science, 53, 4265 (2011). Doi: https://doi.org/10.1016/j.corsci.2011.08.038
  54. T. A. Salman, A. A. Al-Amiery, L. M. Shaker, A. A. Kadhum, M. S. Takriff, A study on the inhibition of mild steel corrosion in hydrochloric acid environment by 4-methyl-2-(pyridin-3-yl) thiazole-5-carbohydrazide, International Journal of Corrosion and Scale Inhibition, 8, 1035 (2019). Doi: https://doi.org/10.17675/2305-6894-2019-8-4-14
  55. H. J. Habeeb, H. M. Luaibi, T. A. Abdullah, R. M. Dakhil, A. A. Kadhum, A. A. Al-Amiery, Case study on thermal impact of novel corrosion inhibitor on mild steel, Case Studies in Thermal Engineering, 12, 64 (2018). Doi: https://doi.org/10.1016/j.csite.2018.03.005
  56. M. A. Quraishi, H. K. Sharma, 4-Amino-3-butyl-5-mercapto-1, 2, 4-triazole: A new corrosion inhibitor for mild steel in sulphuric acid, Materials Chemistry and Physics, 78, 18 (2003). Doi: https://doi.org/10.1016/S0254-0584(02)00313-9
  57. T. Poornima, J. Nayak, A. N. Shetty, Corrosion inhibition of the annealed 18 Ni 250 grade maraging steel in 0.67 m phosphoric acid by 3, 4-dimethoxybenzaldehydethiosemicarbazone, Chemical Sciences Journal, 69, 1 (2012). https://www.hilarispublisher.com/open-access/corrosion-inhibition-of-the-annealed-ni-grade-maraging-steelin-m-phosphoric-acid-by-dimethoxybenzaldehydethiosemicarbazone.2150-3494.1000048.pdf 1000048.pdf
  58. M. Abdallah, E. A. Helal, A. S. Fouda, Aminopyrimidine derivatives as inhibitors for corrosion of 1018 carbon steel in nitric acid solution, Corrosion Sciences, 48, 1639 (2006). Doi: https://doi.org/10.1016/j.corsci.2005.06.020
  59. T. A. Salman, Q. A. Jawad, M. A. Hussain, A. A. AlAmiery, L. Mohamed, A. A. Kadhum, M. S. Takriff, Novel ecofriendly corrosion inhibition of mild steel in strong acid environment: Adsorption studies and thermal effects, Internation Journal of Corrosion and Scale Inhibition, 8, 1123 (2019). Doi: https://doi.org/10.17675/2305-6894-2019-8-4-19
  60. A. A. Alamiery, W. N. Wan Isahak, M. S. Takriff, Inhibition of Mild Steel Corrosion by 4-benzyl-1-(4-oxo-4-phenylbutanoyl) thiosemicarbazide: Gravimetrical, Adsorption and Theoretical Studies, Lubricants, 9, 93 (2021). Doi: https://doi.org/10.3390/lubricants9090093
  61. D. M. Jamil, A. K. Al-Okbi, M. M. Hanon, K. S. Rida, A. F. Alkaim, A. A. Al-Amiery, A. Kadhim, A. A. Kadhum, Carbethoxythiazole corrosion inhibitor: As an experimentally model and DFT theory, Journal of Engineering and Applied Sciences, 13, 3952 (2018). Doi: https://doi.org/10.36478/jeasci.2018.3952.3959
  62. A. Y. Musa, W. Ahmoda, A. A. Al-Amiery, A. A. Kadhum, A. B. Mohamad, Quantum chemical calculation for the inhibitory effect of compounds, Journal of Structural Chemistry, 54, 301 (2013). Doi: https://doi.org/10.1134/S0022476613020042
  63. S. Al-Baghdadi, T. S. Gaaz, A. Al-Adili, A. A. AlAmiery, M. S. Takriff, Experimental studies on corrosion inhibition performance of acetylthiophene thiosemicarbazone for mild steel in HCl complemented with DFT investigation, International Journal of Low-Carbon Technologies, 16, 181 (2021). Doi: https://doi.org/10.1093/ijlct/ctaa050
  64. A. Al-Amiery, T. A. Salman, K. F. Alazawi, L. M. Shaker, A. A. Kadhum, M. S. Takriff, Quantum chemical elucidation on corrosion inhibition efficiency of Schiff base: DFT investigations supported by weight loss and SEM techniques, International Journal of Low-Carbon Technologies, 15, 202 (2020). Doi: https://doi.org/10.1093/ijlct/ctz074
  65. T. A. Salman, K. F. Al-Azawi, I. M. Mohammed, S. B. Al-Baghdadi, A. A. Al-Amiery, T. S. Gaaz, A. A. Kadhum, Experimental studies on inhibition of mild steel corrosion by novel synthesized inhibitor complemented with quantum chemical calculations, Results in Physics, 10, 291 (2018). Doi: https://doi.org/10.1016/j.rinp.2018.06.019
  66. D. S. Zinad, M. Hanoon, R. D. Salim, S. I. Ibrahim, A. A. Al-Amiery, M. S. Takriff, A. A. Kadhum, A new synthesized coumarin-derived Schiff base as a corrosion inhibitor of mild steel surface in HCl medium: Gravimetric and DFT studies, International Journal of Corrosion and Scale Inhibition, 9, 228 (2020). Doi: https://doi.org/10.17675/2305-6894-2020-9-1-14
  67. A. A. Alamiery, Effect of Temperature on the Corrosion Inhibition of 4-ethyl-1-(4-oxo-4-phenylbutanoyl), Letters in Applied NanoBioScience, 11, 3502 (2022). Doi: https://doi.org/10.33263/LIANBS112.35023508
  68. D. S. Zinad, Q. A. Jawad, M. A. Hussain, A. Mahal, L. Mohamed, A. A. Al-Amiery, Adsorption, temperature and corrosion inhibition studies of a coumarin derivatives corrosion inhibitor for mild steel in acidic medium: Gravimetric and theoretical investigations, International Journal of Corrosion and Scale Inhibition, 9, 134 (2020). Doi: https://doi.org/10.17675/2305-6894-2020-9-1-8
  69. J. A. Yamin, E. A. Sheet, A. Al-Amiery, Statistical analysis and optimization of the corrosion inhibition efficiency of a locally made corrosion inhibitor under different operating variables using RSM, International Journal of Corrosion and Scale Inhibition, 9, 502 (2020). Doi: https://doi.org/10.17675/2305-6894-2020-9-2-6
  70. T. A. Salman, D. S. Zinad, S. H. Jaber, M. Al-Ghezi, A. Mahal, M. S. Takriff, A. A. Al-Amiery, Effect of 1, 3, 4-thiadiazole scaffold on the corrosion inhibition of mild steel in acidic medium: An experimental and computational study, Journal of Bio-and Tribo-Corrosion, 5, 11 (2019). Doi: https://doi.org/10.1007/s40735-019-0243-7
  71. S. B. Al-Baghdadi, A. A. Al-Amiery, A. A. Kadhum, M. S. Takriff, Computational Calculations, Gravimetrical, and Surface Morphological Investigations of Corrosion Inhibition Effect of Triazole Derivative on Mild Steel in HCl, Journal of Computational and Theoretical Nanoscience, 17, 2897 (2020). Doi: https://doi.org/10.1166/jctn.2020.9328
  72. M. M. Hanoon, Z. A. Gbashi, A. A. Al-Amiery, A. Kadhim, A. A. Kadhum, M. S. Takriff, Study of Corrosion Behavior of N'-acetyl-4-pyrrol-1-ylbenzohydrazide for Low-Carbon Steel in the Acid Environment: Experimental, Adsorption Mechanism, Surface Investigation, and DFT Studies, Progress in Color Colorants and Coatings, 15, 133 (2022). https://pccc.icrc.ac.ir/article_81789_a8a7e55e3fc95bcf7aa223671e4f8495.pdf
  73. M. M. Hanoon, A. M. Resen, A. A. Al-Amiery, A. A. Kadhum, M. S. Takriff, Theoretical and Experimental Studies on the Corrosion Inhibition Potentials of 2-((6-Methyl-2-Ketoquinolin-3-yl) Methylene) Hydrazinecarbothioamide for Mild Steel in 1 M HCl, Progress in Color Colorants and Coatings, 15, 11 (2022). Doi:https://doi.org/10.30509/PCCC.2020.166739.1095