Acknowledgement
The authors are grateful to the Universiti Kebangsaan Malaysia (UKM) for support under project code: GUP-2020-012.
References
- F. Bentiss, F. Gassama, D. Barbry, L. Gengembre, H. Vezin, M. Lagrenee, M. Traisnel, Enhanced corrosion resistance of mild steel in molar hydrochloric acid solution by 1, 4-bis (2-pyridyl)-5H-pyridazino [4, 5-b]indole: Electrochemical, theoretical and XPS studies, Applied Surface Science, 252, 2684 (2006). Doi: https://doi.org/10.1016/j.apsusc.2005.03.231
- H. Lgaz, S. K. Saha, A. Chaouiki, K. S. Bhat, R. Salghi, P. Banerjee, I. H. Ali, M. I. Khan, I.-M. Chung, Exploring the potential role of pyrazoline derivatives in corrosion inhibition of mild steel in hydrochloric acid solution: Insights from experimental and computational studies, Construction and Building Materials, 233, 117320 (2020). Doi: https://doi.org/10.1016/j.conbuildmat.2019.117320
- Ehsani, A.; Nasrollahzadeh, M.; Mahjani, M.G.; Moshrefi, R.; Mostaanzadeh, H. Electrochemical and quantum chemical investigation of inhibitory of 1,4-Ph(OX)2(Ts)2 on corrosion of 1005 aluminum alloy in acidic medium, Journal of Industrial And Engineering Chemistry, 20, 4363 (2014).
- A. Dehghani, G. Bahlakeh, B. Ramezanzadeh, M. Ramezanzadeh, Detailed macro-/micro-scale exploration of the excellent active corrosion inhibition of a novel environmentally friendly green inhibitor for carbon steel in acidic environments, Journal of the Taiwan Institute of Chemical Engineeris, 100, 239 (2019). Doi: https://doi.org/10.1016/j.jtice.2019.04.002
- Asadi, N.; Ramezanzadeh, M.; Bahlakeh, G.; Ramezanzadeh, B. Utilizing Lemon Balm extract as an effective green corrosion inhibitor for mild steel in 1M HCl solution: A detailed experimental, molecular dynamics, Monte Carlo and quantum mechanics study, Journal of the Taiwan Institute of Chemical Engineers, 95, 252 (2019). Doi: https://doi.org/10.1016/j.jtice.2018.07.011
- H. Jafari, K. Sayin, Sulfur Containing Compounds as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution, Transactions of the Indian Institute of Metals, 69, 805 (2016). Doi: https://doi.org/10.1007/s12666-015-0556-2
- A. K. Singh, E. E. Ebenso, M. A. Quraishi, Adsorption Behaviour of Cefapirin on Mild Steel in Hydrochloric Acid Solution, International Journal of Electrochemical Science, 7, 2320 (2012).
- Y.-S. Choi, J.-J. Shim, J.-G. Kim, Effects of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water, Journal of Alloys and Compounds, 391, 162
- D. Li, Y. Feng, Z. Bai, J. Zhu, M. Zheng, Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution, Electrochimica Acta, 52, 7877 (2007). Doi: https://doi.org/10.1016/j.electacta.2007.06.059
- C. Liu, R. I. Revilla, Z. Liu, D. Zhang, X. Li, H. Terryn, Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel, Corrosion Science, 129, 82 (2017). Doi: https://doi.org/10.1016/j.corsci.2017.10.001
- Q. Ma, Z. Tong, W. Wang, G. Dong, Fabricating robust and repairable superhydrophobic surface on carbon steel by nanosecond laser texturing for corrosion protection, Applied Surface Science, 455, 748 (2018). Doi: https://doi.org/10.1016/j.apsusc.2018.06.033
- T. V. Shibaeva, V. Laurinavichyute, G. Tsirlina, A. M. Arsenkin, K. V. Grigorovich, The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions, Corrosion Science, 80, 299 (2014). Doi: https://doi.org/10.1016/j.corsci.2013.11.038
- Y. Wang, Z. Jiang, Z. Yao, H. Tang, Microstructure and corrosion resistance of ceramic coating on carbon steel prepared by plasma electrolytic oxidation, Surface Coatings Technology, 204, 1685 (2010). Doi: https://doi.org/10.1016/j.surfcoat.2009.10.023
- V. S. Brito, I. Bastos, H. Costa, Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel, Materials & Design 41, 282 (2012). Doi: https://doi.org/10.1016/j.matdes.2012.05.008
- X. Chen, C. Chen, H. Xiao, F. Cheng, G. Zhang, G. Yi, Corrosion behavior of carbon nanotubes-Ni composite coating, Surface and Coatings Technology, 191, 351 (2005). Doi: https://doi.org/10.1016/j.surfcoat.2004.04.055
- Y. Ye, Z. Liu, W. Liu, D. Zhang, H. Zhao, L. Wang, X. Li, Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel, Chemical Engineering Journal, 348, 940 (2018). Doi: https://doi.org/10.1016/j.cej.2018.02.053
- N. A. Negm, N. G. Kandile, E. A. Badr, M. A. Mohammed, Gravimetric and electrochemical evaluation of environmentally friendly nonionic corrosion inhibitors for carbon steel in 1M HCl, Corrosion Science, 65, 94 (2012). Doi: https://doi.org/10.1016/j.corsci.2012.08.002
- C. Verma, E. Ebenso, I. Bahadur, I. Obot, M. Quraishi, 5-(Phenylthio)-3H-pyrrole-4-carbonitriles as effective corrosion inhibitors for mild steel in 1 M HCl: Experimental and theoretical investigation, Journal of Molecular Liquids, 212, 209 (2015). Doi: https://doi.org/10.1016/j.molliq.2015.09.009
- C. Verma, M. Quraishi, A. Singh, 2-Amino-5-nitro-4, 6-diarylcyclohex-1-ene-1, 3, 3-tricarbonitriles as new and effective corrosion inhibitors for mild steel in 1 M HCl: Experimental and theoretical studies, Journal of Molecular Liquids, 212, 804 (2015). Doi: https://doi.org/10.1016/j.molliq.2015.10.026
- D. Daoud, T. Douadi, H. Hamani, S. Chafaa, M. AlNoaimi, Corrosion inhibition of mild steel by two new Sheterocyclic compounds in 1 M HCl: Experimental and computational study, Corrosion Science, 94, 21 (2015). Doi: https://doi.org/10.1016/j.corsci.2015.01.025
- R. M. Kubba, A. S. Alag, Experimental and Theoretical Evaluation of new Quinazolinone Derivative as Organic Corrosion Inhibitor for Carbon Steel in 1M HCl Solution, International Journal of Science and Research (IJSR), 6, 1832 (2017). Doi: https://doi.org/10.21275/ART20174699
- F. Bentiss, M. Lagrenee, M. Traisnel, J. Hornez, The corrosion inhibition of mild steel in acidic media by a new triazole derivative, Corrosion Science, 41, 789 (1999). Doi: https://doi.org/10.1016/S0010-938X(98)00153-X
- R. Baskar, D. Kesavan, M. Gopiraman, K. Subramanian, Corrosion inhibition of mild steel in 1.0M hydrochloric acid medium by new photo-cross-linkable polymers, Progress in Organic Coatings, 77, 836 (2014). Doi:https://doi.org/10.1016/j.porgcoat.2014.01.013
- C. Verma, L. O. Olasunkanmi, E. E. Ebenso, M. A. Quraishi, Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: A review, Journal of Molecular Liquids, 251, 100 (2018). Doi: https://doi.org/10.1016/j.molliq.2017.12.055
- E. A. Flores, O. Olivares, N. V. Likhanova, M. A. Dominguez-Aguilar, N. Nava, D. Guzman-Lucero, M. Corrales, Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution, Corrosion Science, 53, 3899 (2011). Doi: https://doi.org/10.1016/j.corsci.2011.07.023
- A. Dehghani, F. Poshtiban, G. Bahlakeh, B. Ramezanzadeh, Fabrication of metal-organic based complex film based on threevalent samarium ions-[bis (phosphonomethyl) amino] methylphosphonic acid (ATMP) for effective corrosion inhibition of mild steel in simulated seawater, Construction and Building Materials, 239, 117812 (2020). Doi: https://doi.org/10.1016/j.conbuildmat.2019.117812
- B. Lin, Y. Zuo, Corrosion inhibition of carboxylate inhibitors with different alkylene chain lengths on carbon steel in an alkaline solution, RSC Advances, 9, 7065 (2019). Doi: https://doi.org/10.1039/C8RA10083G
- K. S. Bokati, C. Dehghanian, S. Yari, Corrosion inhibition of copper, mild steel and galvanically coupled copper-mild steel in artificial sea water in presence of 1Hbenzotriazole, sodium molybdate and sodium phosphate, Corrosion Science, 126, 272 (2017). Doi: https://doi.org/10.1016/j.corsci.2017.07.009
- M. Finsgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review Corrosion Science, 86, 17 (2014). Doi:https://doi.org/10.1016/j.corsci.2014.04.044
- I. B. Onyeachu, M. M. Solomon, S. A. Umoren, I. B. Obot, A. A. Sorour, Corrosion inhibition effect of a benzimidazole derivative on heat exchanger tubing materials during acid cleaning of multistage flash desalination plants, Desalination, 479, 114283 (2020). Doi: https://doi.org/10.1016/j.desal.2019.114283
- C. R. Vinodkumar, P. K. Radhakrishnan, Complexes of yttrium and lanthanide perchlorates with 4-N-(2'-furfurylidene)aminoantipyrine, Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 27, 1347 (1997). Doi: https://doi.org/10.1080/00945719708000162
- TM0193-2016-SG, Laboratory Corrosion Testing of Metals in Static Chemical Cleaning Solutions at Temperatures below 93 ℃ (200 ℃), NACE International (2000).
- L. Guo, J. Tan, S. Kaya, S. Leng, O. Li, F. Zhang, Multidimensional insights into the corrosion inhibition of 3,3- dithiodipropionic acid on Q235 steel in H2SO4 medium: A combined experimental and in silico investigation, Journal of Colloid and Interface Science, 570, 116 (2020). Doi: https://doi.org/10.1016/j.jcis.2020.03.001
- B. M. Prasanna, B. M. Praveen, N. Hebbar, Inhibition study of mild steel corrosion in 1 M hydrochloric acid solution by 2-chloro 3-formyl quinoline, International Journal of Industrial Chemistry, 7, 9 (2016). Doi: https://doi.org/10.1007/s40090-015-0064-6
- ASTM International, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test, 1-9 (2011).
- Koopmans T. Ordering of wave functions and eigenenergies to the individual electrons of an atom, Physica, 1, 104 (1933). Doi: https://doi.org/10.1016/S0031-8914(34)90011-2
- M. E. Mashuga, L. O. Olasunkanmi, E. E. Ebenso, Experimental and theoretical investigation of the inhibitory effect of new pyridazine derivatives for the corrosion of mild steel in 1 M HCl, Journal of Molecular Structure, 1136, 127 (2017). Doi: https://doi.org/10.1016/j.molstruc.2017.02.002
- E. A. Muller, B. Pollard, H. A. Bechtel, P. van Blerkom, M. B. Raschke, Infrared vibrational nanocrystallography and nanoimaging, Science Advances, 2 e1601006 (2016). Doi: https://doi.org/10.1126/sciadv.1601006
- L. Liu, N. Wang, C. Zhu, X. Liu, Y. Zhu, P. Guo, L. Alfilfil, X. Dong, D. Zhang, Y. Han, Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5, Angewandte Chemie International Edition, 59, 819 (2020). Doi: https://doi.org/10.1002/anie.201909834
- Tamalmani, K.; Husin, H. Review on Corrosion Inhibitors for Oil and Gas Corrosion Issues, Applied Sciences, 10, 3389 (2020). Doi: https://doi.org/10.3390/app10103389
- Alamiery, A. Corrosion inhibition effect of 2-N-phenylamino-5-(3-phenyl-3-oxo-1-propyl)-1, 3, 4-oxadiazole on mild steel in 1 M hydrochloric acid medium: Insight from gravimetric and DFT investigations, Materials Science for Energy Technologies, 4, 398 (2021). Doi: https://doi.org/10.1016/j.mset.2021.09.002
- A. A. Alamiery, Anticorrosion effect of thiosemicarbazide derivative on mild steel in 1 M hydrochloric acid and 0.5 M sulfuric Acid: Gravimetrical and theoretical studies, Materials Science for Energy Technologies, 4, 263 (2021). Doi: https://doi.org/10.1016/j.mset.2021.07.004
- I. Aziz, I. Annon, M. H. Abdulkareem, M. M. Hanoon, M. H. Alkaabi, L. M. Shaker, A. A. Alamiery, W. N. R. Wan Isahak, and M. S. Takriff, Insights into Corrosion Inhibition Behavior of a 5-Mercapto-1, 2, 4-triazole Derivative for Mild Steel in Hydrochloric Acid Solution: Experimental and DFT Studies, Lubricants, 9, 122 (2021). Doi: https://doi.org/10.3390/lubricants9120122
- A. Nahle, R. Salim, F. El Hajjaji, M. R. Aouad, M. Messali, E. Ech-Chihbi, B. Hammouti, M. Taleb, Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: Experimental & theoretical approach. RSC Advances, 11, 4147 (2021). Doi: https://doi.org/10.1039/D0RA09679B
- A. Espinoza-Vazquez, F. J. Rodriguez-Gomez, I. K. Martinez-Cruz, D. Angeles-Beltran,Negron-Silva, G.E.; M. Palomar-Pardave, L. L. Romero, D. Perez-Martinez, A. M. Navarrete-Lopez, Adsorption and corrosion inhibition behaviour of new theophylline-triazole-based derivatives for steel in acidic medium, Royal Society Open Science, 6, 181738 (2019). Doi: https://doi.org/10.1098/rsos.181738
- I. Merimi, R. Benkaddour, H. Lgaz, N. Rezki, M. Messali, F. Jeffali, H. Oudda, B. Hammouti, Insights into corrosion inhibition behavior of a triazole derivative for mild steel in hydrochloric acid solution, Materialstoday Proceedings, 13, 1008 (2019). Doi: https://doi.org/10.1016/j.matpr.2019.04.066
- L. Wang, M. J. Zhu, F. C. Yang, C. W. Gao, Study of a triazole derivative as corrosion inhibitor for mild steel in phosphoric acid solution, International Journal of Corrosion, 2012, 573964 (2012). https://doi.org/10.1155/2012/573964
- F. Bentiss, M. Bouanis, B. Mernari, M. Traisnel, H. Vezin, M. Lagrenee, Understanding the adsorption of 4H1, 2, 4-triazole derivatives on mild steel surface in molar hydrochloric acid, Applied Surface Science, 253, 3696 (2007). Doi: https://doi.org/10.1016/j.apsusc.2006.08.001
- B. El Mehdi, B. Mernari, M. Traisnel, F. Bentiss, M. Lagrenee, Synthesis and comparative study of the inhibitive effect of some new triazole derivatives towards corrosion of mild steel in hydrochloric acid solution, Materials Chemistry and Physics, 77, 489 (2003). Doi:https://doi.org/10.1016/S0254-0584(02)00085-8
- H. H. Hassan, E. Abdelghani, M. A. Amin, Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part I. Polarization and EIS Studies, Electrochimica Acta, 52, 6359 (2007). Doi: https://doi.org/10.1016/j.electacta.2007.04.046
- S. Ramesh, S. Rajeswari, Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives, Electrochimica Acta, 49, 811 (2004). Doi:https://doi.org/10.1016/j.electacta.2003.09.035
- L. G. Qiu, A. J. Xie, Y. H. Shen, A novel triazole-based cationic gemini surfactant: Synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid, Materials Chemistry and Physics, 91, 269 (2005). Doi: https://doi.org/10.1016/j.matchemphys.2004.11.022
- B. D. Mert, M. E. Mert, G. Kardas, B. Yazici, Experimental and theoretical investigation of 3-amino-1, 2, 4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium, Corrosion Science, 53, 4265 (2011). Doi: https://doi.org/10.1016/j.corsci.2011.08.038
- T. A. Salman, A. A. Al-Amiery, L. M. Shaker, A. A. Kadhum, M. S. Takriff, A study on the inhibition of mild steel corrosion in hydrochloric acid environment by 4-methyl-2-(pyridin-3-yl) thiazole-5-carbohydrazide, International Journal of Corrosion and Scale Inhibition, 8, 1035 (2019). Doi: https://doi.org/10.17675/2305-6894-2019-8-4-14
- H. J. Habeeb, H. M. Luaibi, T. A. Abdullah, R. M. Dakhil, A. A. Kadhum, A. A. Al-Amiery, Case study on thermal impact of novel corrosion inhibitor on mild steel, Case Studies in Thermal Engineering, 12, 64 (2018). Doi: https://doi.org/10.1016/j.csite.2018.03.005
- M. A. Quraishi, H. K. Sharma, 4-Amino-3-butyl-5-mercapto-1, 2, 4-triazole: A new corrosion inhibitor for mild steel in sulphuric acid, Materials Chemistry and Physics, 78, 18 (2003). Doi: https://doi.org/10.1016/S0254-0584(02)00313-9
- T. Poornima, J. Nayak, A. N. Shetty, Corrosion inhibition of the annealed 18 Ni 250 grade maraging steel in 0.67 m phosphoric acid by 3, 4-dimethoxybenzaldehydethiosemicarbazone, Chemical Sciences Journal, 69, 1 (2012). https://www.hilarispublisher.com/open-access/corrosion-inhibition-of-the-annealed-ni-grade-maraging-steelin-m-phosphoric-acid-by-dimethoxybenzaldehydethiosemicarbazone.2150-3494.1000048.pdf 1000048.pdf
- M. Abdallah, E. A. Helal, A. S. Fouda, Aminopyrimidine derivatives as inhibitors for corrosion of 1018 carbon steel in nitric acid solution, Corrosion Sciences, 48, 1639 (2006). Doi: https://doi.org/10.1016/j.corsci.2005.06.020
- T. A. Salman, Q. A. Jawad, M. A. Hussain, A. A. AlAmiery, L. Mohamed, A. A. Kadhum, M. S. Takriff, Novel ecofriendly corrosion inhibition of mild steel in strong acid environment: Adsorption studies and thermal effects, Internation Journal of Corrosion and Scale Inhibition, 8, 1123 (2019). Doi: https://doi.org/10.17675/2305-6894-2019-8-4-19
- A. A. Alamiery, W. N. Wan Isahak, M. S. Takriff, Inhibition of Mild Steel Corrosion by 4-benzyl-1-(4-oxo-4-phenylbutanoyl) thiosemicarbazide: Gravimetrical, Adsorption and Theoretical Studies, Lubricants, 9, 93 (2021). Doi: https://doi.org/10.3390/lubricants9090093
- D. M. Jamil, A. K. Al-Okbi, M. M. Hanon, K. S. Rida, A. F. Alkaim, A. A. Al-Amiery, A. Kadhim, A. A. Kadhum, Carbethoxythiazole corrosion inhibitor: As an experimentally model and DFT theory, Journal of Engineering and Applied Sciences, 13, 3952 (2018). Doi: https://doi.org/10.36478/jeasci.2018.3952.3959
- A. Y. Musa, W. Ahmoda, A. A. Al-Amiery, A. A. Kadhum, A. B. Mohamad, Quantum chemical calculation for the inhibitory effect of compounds, Journal of Structural Chemistry, 54, 301 (2013). Doi: https://doi.org/10.1134/S0022476613020042
- S. Al-Baghdadi, T. S. Gaaz, A. Al-Adili, A. A. AlAmiery, M. S. Takriff, Experimental studies on corrosion inhibition performance of acetylthiophene thiosemicarbazone for mild steel in HCl complemented with DFT investigation, International Journal of Low-Carbon Technologies, 16, 181 (2021). Doi: https://doi.org/10.1093/ijlct/ctaa050
- A. Al-Amiery, T. A. Salman, K. F. Alazawi, L. M. Shaker, A. A. Kadhum, M. S. Takriff, Quantum chemical elucidation on corrosion inhibition efficiency of Schiff base: DFT investigations supported by weight loss and SEM techniques, International Journal of Low-Carbon Technologies, 15, 202 (2020). Doi: https://doi.org/10.1093/ijlct/ctz074
- T. A. Salman, K. F. Al-Azawi, I. M. Mohammed, S. B. Al-Baghdadi, A. A. Al-Amiery, T. S. Gaaz, A. A. Kadhum, Experimental studies on inhibition of mild steel corrosion by novel synthesized inhibitor complemented with quantum chemical calculations, Results in Physics, 10, 291 (2018). Doi: https://doi.org/10.1016/j.rinp.2018.06.019
- D. S. Zinad, M. Hanoon, R. D. Salim, S. I. Ibrahim, A. A. Al-Amiery, M. S. Takriff, A. A. Kadhum, A new synthesized coumarin-derived Schiff base as a corrosion inhibitor of mild steel surface in HCl medium: Gravimetric and DFT studies, International Journal of Corrosion and Scale Inhibition, 9, 228 (2020). Doi: https://doi.org/10.17675/2305-6894-2020-9-1-14
- A. A. Alamiery, Effect of Temperature on the Corrosion Inhibition of 4-ethyl-1-(4-oxo-4-phenylbutanoyl), Letters in Applied NanoBioScience, 11, 3502 (2022). Doi: https://doi.org/10.33263/LIANBS112.35023508
- D. S. Zinad, Q. A. Jawad, M. A. Hussain, A. Mahal, L. Mohamed, A. A. Al-Amiery, Adsorption, temperature and corrosion inhibition studies of a coumarin derivatives corrosion inhibitor for mild steel in acidic medium: Gravimetric and theoretical investigations, International Journal of Corrosion and Scale Inhibition, 9, 134 (2020). Doi: https://doi.org/10.17675/2305-6894-2020-9-1-8
- J. A. Yamin, E. A. Sheet, A. Al-Amiery, Statistical analysis and optimization of the corrosion inhibition efficiency of a locally made corrosion inhibitor under different operating variables using RSM, International Journal of Corrosion and Scale Inhibition, 9, 502 (2020). Doi: https://doi.org/10.17675/2305-6894-2020-9-2-6
- T. A. Salman, D. S. Zinad, S. H. Jaber, M. Al-Ghezi, A. Mahal, M. S. Takriff, A. A. Al-Amiery, Effect of 1, 3, 4-thiadiazole scaffold on the corrosion inhibition of mild steel in acidic medium: An experimental and computational study, Journal of Bio-and Tribo-Corrosion, 5, 11 (2019). Doi: https://doi.org/10.1007/s40735-019-0243-7
- S. B. Al-Baghdadi, A. A. Al-Amiery, A. A. Kadhum, M. S. Takriff, Computational Calculations, Gravimetrical, and Surface Morphological Investigations of Corrosion Inhibition Effect of Triazole Derivative on Mild Steel in HCl, Journal of Computational and Theoretical Nanoscience, 17, 2897 (2020). Doi: https://doi.org/10.1166/jctn.2020.9328
- M. M. Hanoon, Z. A. Gbashi, A. A. Al-Amiery, A. Kadhim, A. A. Kadhum, M. S. Takriff, Study of Corrosion Behavior of N'-acetyl-4-pyrrol-1-ylbenzohydrazide for Low-Carbon Steel in the Acid Environment: Experimental, Adsorption Mechanism, Surface Investigation, and DFT Studies, Progress in Color Colorants and Coatings, 15, 133 (2022). https://pccc.icrc.ac.ir/article_81789_a8a7e55e3fc95bcf7aa223671e4f8495.pdf
- M. M. Hanoon, A. M. Resen, A. A. Al-Amiery, A. A. Kadhum, M. S. Takriff, Theoretical and Experimental Studies on the Corrosion Inhibition Potentials of 2-((6-Methyl-2-Ketoquinolin-3-yl) Methylene) Hydrazinecarbothioamide for Mild Steel in 1 M HCl, Progress in Color Colorants and Coatings, 15, 11 (2022). Doi:https://doi.org/10.30509/PCCC.2020.166739.1095