• Title/Summary/Keyword: Removal capacity

Search Result 1,109, Processing Time 0.03 seconds

Removal Efficiency of the Deodorization Equipment and Characteristics of Malodor during the Process in Co-treatment of Sewage and Food Waste of Su-young Wastewater Treatment Plant in Busan (부산수영하수처리장 하수와 음식물쓰레기 병합처리 시 공정별 악취특성 및 후처리시설 효율평가)

  • Lee, Hyung-Don;Kang, Dae-Jong;Lee, Min-Ho;Kang, Dong-Hyo;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.379-389
    • /
    • 2012
  • Environmental issues are being paid more attention due to income growth, urban overcrowding, and population growth in Korea. Among the various environmental problems, odor damage is the one of the serious factors. To take example for food waste combination treatment in Su-young wastewater treatment plant in Busan, many complaints occurred because this plant locate around residential areas. The purpose of this work is not only to analyze odorous elements and their contributions but also to evaluate odor quotient (OQ), sum of odor quotient (SOQ), and treatment efficiency of bio-filter. The results of dilution sensory test of complex odor, grinder, leachate, hopper indicated higher order complex odors happen in July and August. The main odorous elements consisted of hydrogen sulfide, ammonia, methly mercaptan and acetaldehyde, which were analyzed by instrumental detection method, and methyl mercaptan was exceeded over 3,571 times of threshold. In addition, result of contribution of odor was methyl mercaptan (49.95 to 59.08%), hydrogen sulfide (20.43 to 29.27%), trimethylamine (8.82 to 13.42%) and acetaldehyde (9.17 to 11.35%). Other facilities were compared with the contribution of the odor using OQ and SOQ during the process. Sulfur compounds, acetaldehyde, and trimethylamine are high contribution of odor using OQ as well as odor intensity of grinding process is highest. As a result, sulfur compounds (e.g., methyl mercaptan and hydrogen sulfide) are highest for OQ and SOQ of grinding process is highest as 7,067. The removal efficiency of deodorization equipment was more than 90.00% in ammonia and amines, but the average efficiency of sulfur compounds was 53.51%. Thus, this facility is more higher contribution of acetaldehyde and trimethylamine than other treatment facilities. And food waste treatment in environmental area needs to consider appropriate capacity and refers to other bio-filter operating conditions.

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.

Adsorptive Removal of Radionuclide Cs+ in Water using Acid Active Clay (산활성 점토를 이용한 수중의 방사성 핵종 Cs+ 흡착 제거)

  • Lee, Jae Sung;Kim, Su Jin;Kim, Ye Eun;Kim, Seong Yun;Kim, Eun;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • Natural white clay was treated with 6 M of H2SO4 and heated at 80℃ for 6 h under mechanical stirring and the resulting acid active clay was used as an adsorbent for the removal of Cs+ in water. The physicochemical changes of natural white clay and acid active clay were observed by X-ray Fluorescence Spectrometry (XRF), BET Surface Area Analyser and Energy Dispersive X-line Spectrometer (EDX). While activating natural white clay with acid, the part of Al2O3, CaO, MgO, SO3 and Fe2O3 was dissolved firstly from the crystal lattice, which bring about the increase in the specific surface area and the pore volume as well as active sites. The specific surface area and the pore volume of acid active clay were roughly twice as high compared with natural white clay. The adsorption of Cs+ on acid active clay was increased rapidly within 1 min and reached equilibrium at 60 min. At 25 mg L- of Cs+ concentration, 96.88% of adsorption capacity was accomplished by acid active clay. The adsorption data of Cs+ were fitted to the adsorption isotherm and kinetic models. It was found that Langmuir isotherm was described well to the adsorption behavior of Cs+ on acid active clay rather than Freundlich isotherm. For adsorption Cs+ on acid active clay, the Langmuir isotherm coefficients, Q, was found to be 10.52 mg g-1. In acid active clay/water system, the pseudo-second-order kinetic model was more suitable for adsorption of Cs+ than the pseudo-first-order kinetic model owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal. The overall results of study showed that acid active clay could be used as an efficient adsorbent for the removal of Cs+ from water.

Evaluation of Efficient Pb Removal from Aqueous Solutions using Biochar Beads (바이오차 비드를 이용한 수용액에서 Pb의 효율적인 처리효율 평가)

  • Yu-Jin Park;Jae-Hoon Lee;Jun-Suk Rho;Ah-Young Choi;Sin-Sil Kim;Seul-Rin Lee;Jong-Hwan Park;Dong-Cheol Seo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • The fine particulate structure of biochar limits its use as a heavy metal adsorbent, and makes separation of the biochar from the solution technically challenging, thereby reducing recovery of the heavy metals. To address this issue, this study prepared biochar beads under various mixing conditions and investigated their efficiency in removing Pb from aqueous solutions using adsorption models. The biochar beads were produced by mixing alginate and biochar at different ratios: alginate bead (AB), 1% biochar + bead (1-BB), 2.5% biochar + bead (2.5-BB), and 5% biochar + bead (5-BB). The results revealed that the Freundlich isothermal adsorption pattern of the biochar beads to Pb was of the L-type. The highest Langmuir isothermal adsorption capacity (28.736 mg/g) was observed in the 2.5-BB treatment. The dominant mechanism among the kinetic adsorption characteristics of biochar beads for Pb was chemical adsorption. Additionally, the optimal pH range for Pb adsorption was found to be between 4 and 5.5. The highest Pb removal efficiency (97.9%) was achieved when 26.6 g/L of biochar beads were used. These findings suggest that biochar beads are an economical and highly efficient adsorbent that enables separation and recovery of fine biochar particles.

Adsorption Characteristics of Heavy Metal Ions onto Chemically Modified Rice Husk and Sawdust from Aqueous Solutions (화학적으로 개질된 왕겨 및 톱밥(미송, 참나무, 포플러)의 중금속 흡착특성)

  • Lee, Hyeon-Yong;Jeon, Choong;Lim, Kyoung-Jae;Hong, Ki-Chan;Lim, Jung-Eun;Choi, Bong-Su;Kim, Nam-Won;Yang, Jae-E;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.158-164
    • /
    • 2009
  • Biosorption uses adsorbents derived from non-living biomass and removes toxic metals from industrial wastewater. The objective of this research was to evaluate the potential of low cost biosorbents to remove heavy metal ions (Cd, Cu, Pb and Zn) from aqueous solutions using chemically modified rice husk and saw dust (Pseudotsuga menziesi, Quercus, Populus). Batch-type adsorption experiments were carried out using rice husk and saw dust treated with NaOH and/or tartaric acid in artificial wastewater 100 mg metal/L). The experimental results showed that the adsorption specificity of each biosorbent was Pb > Cu > Cd > Zn irrespective of the types of biosorbents. The adsorption capacity of Pb and Cu onto NaOH-treated sawdust was increased 2${\sim}$3 times compared to the untreated one. In addition, the tartaric acid treatment increased the adsorption capacity of rice husk for Zn and Cd approximately 5${\sim}$10 fold compared to the untreated one. Surface conditions and changes in functional groups by chemical modification of each biosorbent were confirmed by SEM and FT-IR. Overall, the results show that chemical modification increases the metal removal capacity of rice bran and sawdust.

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S (석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명)

  • Soyoung Jeon;Danu Kim;Jeonghyeon Byeon;Daehyun Shin;Minjune Yang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.

Adsorption and Redox State Alteration of Arsenic, Chromium and Uranium by Bacterial Extracellular Polymeric Substances (EPS) (박테리아 세포외 중합체(EPS)에 의한 비소, 크롬, 우라늄의 흡착 및 산화상태 변화)

  • Park, Hyun-Sung;Ko, Myoung-Soo;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.223-233
    • /
    • 2010
  • The effects of extracellular polymeric substances (EPS) of Pseudomonas aeruginosa on adsorption and redox state alteration of dissolved As, Cr and U were investigated through batch experiments. Surfaces of bacterial cells were either vigorously washed or unwashed. Solutions of As(V), Cr(VI) and U(VI) were inoculated with the bacterial cells under no nutrient condition, and total aqueous concentrations and redox state alteration were monitored over time. No As adsorption occurred onto bacteria or EPS; however, unwashed bacteria reduced about 60% As(V) to As(III). Unwashed bacteria also led to removal of 45% total dissolved Cr and reduction of 64% Cr(VI). About 80% U(VI) was removed from solution with unwashed bacteria as well. Such electrochemical reduction of the elements was likely due to reducing capacity of EPS itself or detoxifying reduction of the bacteria which kept their viability under protection of EPS. The results indicated that bacterial biofilm may significantly control the redox state and subsequent mobility of As, Cr and U in natural geologic settings.

The study on the separation characteristics of heavy metal ion by inorganic oxides and ion exchange resin (무기산화물 및 이온교환수지에 의한중금속 이온 분리특성 연구)

  • Dan, Cheol Ho;Kim, eong Ho;Yang, Hyun Soo
    • Clean Technology
    • /
    • v.12 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • The effectiveness of inorganic oxides (DT-30), anionic exchange resin (DT-60) and carbon absorbent (DT-80, DT-90) on the equilibrium and continuous separation characteristics and removal of cobalt, cesium and iodide ion in the waste water was investigated. As a result, DT-30, DT-80 or DT-90, and DT-60 showed excellent separation properties on the cesium, cobalt and iodide respectively. In the equilibrium experiment, the adsorption amount of cesium for DT-30 increased with temperature, but increasd largely with pH. In case of DT-80, adsorption of cobalt was depended on pH but was not influenced by temperature. In the continuous system by passing a heavy metal ion solution through the ion exchange tower, DT-30, DT-90 and DT-60 showed good separation characteristic for cesium, cobalt and iodide respectively. In this case, separation characterization of DT-30 on the cesium and of DT-60 on the iodide were better than that of DT-90 on the cobalt. From the experiment on the effect of impurities on the ion exchange characteristics, impurities such as surfactant and oil did not influence the efficiency of DT-90. In the mean while, ion separation capacity of DT-30 were decreased largely by impurities such as surfactant and oil. Also, surfactant had a strong influence on the effectiveness of DT-60. Accordingly, it turned out to be very important thing that impurities should be removed in the preprocessing stage.

  • PDF

Characterization of Natural Zeolite for Removal of Radioactive Nuclides (방사성 핵종 제거를 위한 천연 제올라이트 특성 연구)

  • Kim, Hu Sik;Park, Won Kwang;Lee, Ha Young;Park, Jong Sam;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.41-51
    • /
    • 2014
  • The four natural zeolites collected in Pohang and Gyeongju area, Kyungsangbuk-do, Korea, were characterized by XRD, XRF, DTA, TGA, and CEC analysis. The primary species of these zeolite are heulandite, modenite, illite, and illite in Kuryongpo (Ku), Pohang (Po), Yangbuk-A (Ya-A), and Yangbuk-B (Ya-B) samples. The XRF analysis showed that the four zeolites contain Si, Al, Na, K, Mg, Ca, and Fe. Cation exchange capacity of Kuryongpo (Ku) zeolite was the highest compared to other zeolites. The adsorption capacities of Cs and Sr in the four natural zeolites were compared at $25^{\circ}C$. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were confirmed. The equilibrium process was descried well by Langmuir isotherm model. This study shows that Ya-A zeolite is the most efficient for the $Cs^+$ and $Sr^{2+}$ ion adsorption compared to the other natural zeolites.

Prediction of the Tritium Behavior in Very High Temperature Gas Cooled Reactor Using TRITGO (TRITGO 코드를 이용한 초고온가스로 (VHTR) 삼중 수소 거동 예측)

  • Park, Jong-Hwa;Park, Ik-Kyu;Lee, Won-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.3
    • /
    • pp.113-120
    • /
    • 2008
  • In this study, The TRITGO code was introduced, which can predict the amount of tritium production, it's transport, removal, distribution and the level of contamination for the produced hydrogen by the tritium on the VHTR (very high temperature gas cooled reactor). The TRITGO code was improved so that the permeation to the IS Iodine Sulfide) loop for producing the hydrogen can be simulated. The contamination level of the produced hydrogen by the tritium was predicted by the improved code for the VHTR with 600MW thermal power. The contamination level for the produced hydrogen by tritium was predicted as 0.055 Bq/$H_2-g$. This level is three order of lower than the regulation value of 56 Bq/$H_2-g$ from Japan. From this study, the following results were obtained. it is important that the fuel coating (SiC layer) should be kept intact to prevent the tritium from releasing. Also it is necessary that the level of impurity such as 3He and Li in the helium coolant and the reflector consisting of the graphite should be kept as low as possible. It was found that the capacity of the purification system for filtering the impurities directly from the coolant will be the important design parameter.