• Title/Summary/Keyword: Removal Time of the Forms

Search Result 41, Processing Time 0.019 seconds

Determination of Removal Time of the Forms with the Strength Development of High Strength Concrete at Early Age (고강도 콘크리트의 초기강도 발현에 따른 거푸집 탈형시기의 결정)

  • 김은호;김영진;한민철;신병철;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.99-102
    • /
    • 2003
  • This study discusses the determination of removal time of forms with early strength development in high strength concrete. According to the results, as W/B increases by 10%, the setting time is shortened by about 2 hours. The time when compressive strength of 8 MPa is gained is about 20 hours. Bond strength between form and concrete is highest around final setting time, but decreases drastically after that. Amount of concrete sticking on the form is large before setting, but after that, it is little. The rebound value of P type schmidt hammer is measured faster by 2-3 hours than compressive strength. It is also confirmed that the removal of forms is possible when the rebound value of P type schmidt hammer is more than 34

  • PDF

A Study on Early-strength Development of Concrete Using Accelerating AE Water Reducing Agents for the Estimation of Optimum Duration (촉진형 AE감수제를 사용한 콘크리트의 최적공기산정을 위한 조기강도 발현 특성 연구)

  • Lee, Joo-Hun;Sa, Soon-Heon;Ji, Suk-Won;Jeon, Hyun-Gyu;Seo, Chee-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.91-94
    • /
    • 2006
  • The way to shorten a construction period is considered to an very important technology development element as reducing the formwork removal periods with promoting strength revelation own concrete. This study executed experiment to review usability of early strength revelation chemical admixture which is judged in ways effective with premature removal of form about concrete. Use of early strength revelation AE water reducin admixture is apperaing so that strength revelation by early hydration promotions is excellent. The results of being applied proposed work process are that compressive strength are appeared more than 5MPa within 16 hours so that removal of vertical form was possible. the concrete compressive strength satisfied with a more than 2/3 of specified concrete strength for removal of horizontal form are appeared in 42 hours of 27 MPa proportioning strength, in 36 hours of 30, 35 MPa proportioning strength so that the 6 days cycle time of concrete structural frame work is cut by 2 days as shortening delayed period in works of removing slab forms. So construction cost reductions and a construction period shortening are judged so that it is possible.

  • PDF

An Experimental Application of Concrete Using TEA in Construction Field (트리에탄올아민을 사용한 콘크리트의 현장 적용 실험)

  • Hwang, Yin-Seong;Lim, Choon-Goun;Kim, Seong-Soo;Han, Cheon -Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.23-26
    • /
    • 2003
  • This study is intended to investigate the properties of early strength development by application of TEA to the field. According to the results, when TEA is added, fluidity is almost same to base concrete, and increases upto aimed slump after field flowing. Setting time does not differ in the case of base and TEA, but retarded after flowing. The time when compressive strength gains 5 MPa, which side form can be removed, is 23 hours, and so the removal time is shortened by I hours in comparison with plain concrete. But compressive strength is almost same to that of plain concrete at 28 days. The rebound value of P type schmidt hammer show similar tendency to compressive strength, and the rebound value of structure is higher than that of standard curing specimen due to heat capacity effect and drying by the air outside. Therefore, it is thought that if the rebound value of P type schmidt hammer is controled. by about 26 in consideration of open air environment, it is very effective to determine the removal time of side forms.

  • PDF

An Experimental Application of Concrete Using TEA in Construction Field (트리에탄올아민을 사용한 콘크리트의 현장 적용 실험)

  • 황인성;임춘근;김성수;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.23.1-26
    • /
    • 2003
  • This study is intended to investigate the properties of early strength development by application of TEA to the field. According to the results, when TEA is added, fluidity is almost same to base concrete, and increases upto aimed slump after field flowing. Setting time does not differ in the case of base and TEA, but is retarded after flowing. The time when compressive strength gains 5 MPa, which side form can be removed, is 23 hours, and so the removal time is shortened by 1hours in comparison with plain concrete. But compressive strength is almost same to that of plain concrete at 28 days. The rebound value of P type schmidt hammer show similar tendency to compressive strength, and the rebound value of structure is higher than that of standard curing specimen due to heat capacity effect and drying by the air outside. Therefore, it is thought that if the rebound value of P type schmidt hammer is controled. by about 26 in consideration of open air environment, it is very effective to determine the removal time of side forms.

  • PDF

Desorption Kinetics and Removal Characteristics of Pb-Contaminated Soil by the Soil Washing Method: Mixing Ratios and Particle Sizes

  • Lee, Yun-Hee;Oa, Seong-Wook
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.145-150
    • /
    • 2012
  • Pb-contaminated soil at a clay shooting range was analyzed by the sequential extraction method to identify metal binding properties in terms of detrital and non-detrital forms of the soil. Most of the metals in the soils existed as non-detrital forms, exchangeable and carbonate-bound forms, which could be easily released from the soil by a washing method. Therefore, the characteristics of Pb desorption for remediation of the Pb-contaminated soil were evaluated using hydrochloric acid (HCl) by a washing method. Batch experiments were performed to identify the factors influencing extraction efficiency. The effects of the solid to liquid (S/L) ratio (1:2, 1:3, and 1:4), soil particle size, and extraction time on the removal capacity of Pb by HCl were evaluated. Soil samples were collected from two different areas: a slope area (SA) and a land area (LA) at the field. As results, the optimal conditions at 2.8 to 0.075 mm of particle size were 1:3 of the S/L ratio and 10 min of extraction time for SA, and 1:4 of the S/L ratio and 5 min of extraction time for LA. The characteristics of Pb desorption were adequately described by two-reaction kinetic models.

Investigation on the Validities of Removal Time of the Forms Considering Rebound Number of P Type Shumidt Hammer (P형 슈미트 햄머의 반발도를 이용한 거푸집 탈형시기의 결정에 관한 타당성 검토)

  • 전충근;김상우;신병호;황인성;신병철;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.909-912
    • /
    • 2001
  • This paper presents the validities of the removal time of side forms considering the relationship between rebound number of P type schmidt hammer and compressive strength. According to test results, compressive strength of 40% of W/C at 12 hours shows 16kgf/$cm^{2}$ and 50% of W/C at 15 hours, 13kgf/$cm^{2}$. Rebound number at 9 hours after casting shows 13 and 9 (W/C 40% and W/C 50%). According to the regression analysis, rebound number of P type schmidt hammer to gain 50kgf/$cm^{2}$ of is estimated 20.1. It is thought that desirable rebound number of P type schmidt hammer to gain 50kgf/$cm^{2}$ is determined 25 considering safety factor.

  • PDF

Determination of Removal Time of the Side Form in High Strength Concrete (고강도콘크리트 시공시 측면 거푸집 탈형시기의 결정)

  • Han Cheon-Goo;Han Min-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.327-334
    • /
    • 2004
  • In this paper, method for the determination of removal time of the side forms in high strength concrete are discussed using the estimation model of compressive strength development, the development of bond strength and rebound number of P type Schmidt hammer in order to review the validity of existing regulation as to side form removal and offer effective quality control method. According to the results, as W/B increases by $10\%$, the setting time is shortened by about 2 hours. In the scope of the paper, required time to gain 8MPa of compressive strength is determined about 17 ${\~}$20 hours of age and $21{\~}25^{\circ}D{\cdot}D$ of maturity. Bond strength between form and concrete shows the highest value around final setting time, but decreases drastically after that. Amount of concrete sticking on the form is large before setting completed, but after that, its amount shows decline tendency. The rebound value test with P type schmidt hammer can be started faster by 2${\~}$3 hours than compressive strength test. It is also confirmed that the removal of forms is possible when the rebound value of P type schmidt hammer is more than 32. It is found from the results that existing regulation regarding removal time of the side form of high strength concrete provided in KCI needs no revision because required time to gain the strength provided in KCI has no adverse effect on strength development at early age and surface condition during stripping the side form. Effective procedure to decide the removal time of side form can be performed by applying P type Schmidt hammer.

The BNR-MBR(Biological Nutrient Removal-Membrane Bioreactor) for nutrient removal from high-rise building in hot climate region

  • Ratanatamskul, C.;Glingeysorn, N.;Yamamoto, K.
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • The overall performance of BNR-MBR, so-called Anoxic-Anaerobic-Aerobic Membrane Bioreactor ($A^3$-MBR), developed for nutrient removal was studied to determine the efficiencies and mechanisms under different solid retention time (SRT). The reactor was fed by synthetic high-rise building wastewater with a COD:N:P ratio of 100:10:2.5. The results showed that TKN, TN and phosphorus removal by the system was higher than 95%, 93% and 80%, respectively. Nitrogen removal in the system was related to the simultaneous nitrification-denitrification (SND) reaction which removed all nitrogen forms in aerobic condition. SND reaction in the system occurred because of the large floc size formation. Phosphorus removal in the system related to the high phosphorus content in bacterial cells and the little effects of nitrate nitrogen on phosphorus release in the anaerobic condition. Therefore, high quality of treated effluent could be achieved with the $A^3$-MBR system for various water reuse purposes.

Basic Study on the Improvement of Material Removal Efficiency of Sapphire CMP Using Electrolytic Ionization and Ultraviolet Light (전해 이온화와 자외선광을 이용한 사파이어 화학기계적 연마의 재료제거 효율 향상에 관한 기초 연구)

  • Park, Seonghyun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.208-212
    • /
    • 2021
  • Chemical mechanical polishing (CMP) is a key technology used for the global planarization of thin films in semiconductor production and smoothing the surface of substrate materials. CMP is a type of hybrid process using a material removal mechanism that forms a chemically reacted layer on the surface of a material owing to chemical elements included in a slurry and mechanically removes the chemically reacted layer using abrasive particles. Sapphire is known as a material that requires considerable time to remove materials through CMP owing to its high hardness and chemical stability. This study introduces a technology using electrolytic ionization and ultraviolet (UV) light in sapphire CMP and compares it with the existing CMP method from the perspective of the material removal rate (MRR). The technology proposed in the study experimentally confirms that the MRR of sapphire CMP can be increased by approximately 29.9, which is judged as a result of the generation of hydroxyl radicals (·OH) in the slurry. In the future, studies from various perspectives, such as the material removal mechanism and surface chemical reaction analysis of CMP technology using electrolytic ionization and UV, are required, and a tribological approach is also required to understand the mechanical removal of chemically reacted layers.

Soil Washing Technology for Sr and Cs-contaminated Soil Near Nuclear Power Plants using Calcium and Potassium Based Solutions (칼슘 및 칼륨 용액을 이용한 원자력발전소 주변 스트론튬과 세슘 오염토양 세척기술 연구)

  • Song, Hojae;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.76-86
    • /
    • 2022
  • Calcium (Ca) and potassium (K) were introduced to remove Sr and Cs in soil, respectively. Four factor and three level Box-Bhenken design was employed to determine the optimal washing condition of Ca- and K-based solutions, and the ranges tested were 0.1 to 1 M of Ca or K, L/S ratio of 5 to 20, washing time of 0.5 to 2 h, and pH of 2 to 7. The optimal washing condition determined was 1 M of Ca or K, L/S ratio of 20, washing time of 1 h, and pH of 2, and Ca-based and K-based solutions showed 68 and 81% removal efficiency for Sr and Cs, respectively in soil. For comparison, widely used conventional washing agents such as 0.075 M EDTA, 0.01 M citric acid, 0.01 M oxalic acid, and 0.05 M phosphoric acid were tested, and they showed 25 to 30% of Sr and Cs removal efficiency. Tessier sequential extraction was employed to identify the changes in chemical forms of Sr and Cs during the washing. In contrast to the conventional washing agents, Ca-based and K-based solutions were able to release relatively strongly bound forms of Sr and Cs such as Fe/Mn-oxide and organic matter bound forms, suggesting the involvement of direct substitution mechanism, probably due to the physicochemical similarities between Sr-Ca and Cs-K.