• Title/Summary/Keyword: Remote monitoring. Integrated monitoring

Search Result 149, Processing Time 0.027 seconds

Geological Heritage Grade Distribution Mapping Using GIS (공간정보를 이용한 지질유산 등급분포도 작성 연구)

  • Lee, Soo-Jae;Lee, Sunmin;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.867-878
    • /
    • 2017
  • Recent interest in geological heritage has been increased in that it can be used as a basic data onto predicting the global environmental change of its containing information about past global environment. In addition, due to the characteristics of the geological heritage, it is easy to damage and difficult to recover without continuous preservation and management. However, there are more damages occurring because of the sporadic spatial distribution and ambiguous management authority of geological heritage. Therefore, an integrated management system is needed by determining the spatial distribution of geological heritage preferentially. In this study, the detailed criteria for assessment of value from the preliminary studies were applied and the geological heritage grade distribution map was generated by using geospatial data in Seoul metropolitan area. For this purpose, the list of geological heritage sites in the Seoul metropolitan area, which is the study area, were complied through a literature review. The geospatial database was designed and constructed by applying the detailed criteria for assessment of value from the preliminary studies. After the construction of the spatial database, a grade map of the geological heritage was created. As a result of the geological heritage grade map in the Seoul metropolitan area, there were more than 35% of the geological heritage in northern Gyeonggi provinces such as Yeoncheon city (18.8%), Pocheon city (10.6%) and Paju city (6.3%). It is followed by 18.1% in Incheon and 8.1% in Ansan, which is approximately 26.2% in western Gyeonggi Province. The geological age of the geological heritage was the highest at in the fourth stage of the Cenozoic era of 16.9%. Through the results of this study, the geological heritage data of the Seoul metropolitan area were extracted from existing literature data and converted into spatial information. It enables comparing the geological features with the spatial distribution of geological heritage. In addition, a management system has been established based on spatial information of constantly building geological heritage data. This provides the integrated management system of the geological heritage to manage authority so that it can be used as a basis for the development of the geological park. Based on the results of this study, it is considered to be possible to systematically construct and utilize the geological heritage across the country.

A Study on the Remote Control for a Integrated Communication Systems (통합통신시스템의 원격제어에 관한 연구)

  • 조학현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • The radio communications by SSB and VHF transceivers are still used very efficiently in coast stations. The SSB and VHF equipments are very important to transmit and receive informations in the sea and the land. The communication system by the conventional SSB and VHF transceivers between a coast station and a terminal is an one-to-one system. In this dissertation, however, the conventional one-to-one system is expanded to one-to-multiple systems. Then, frequencies can be used effectively for distress, urgency, safety traffic. In addition, one to multi-number systems can be used to interrupt. When the ICS equipments are set up to the VHF transceiver. It is possible to communicate with ship in far distance the communication range can be enlarged. The line switching system by the ICS is to be remote-controlled by ASK modulated PTT signals and audio signals. An ICS can change a connection between terminal and transceiver through a circuit switching system at any time. For this purpose, the author has researched and developed a ASK transmission system, ICS system, control algorithm, multiprocessor system, and monitoring system. As a conclusion, the developed line switching control systems and equipments can be used effectively for maritime communication, military communication, fishery communication, etc.

Long-Range Transported SO2 Inflow fromAsian Continent to Korea Peninsula Using OMI SO2 Data and HYSPLIT Backward Trajectory Calculations (OMI 이산화황자료와 HYSPLIT 역궤적 계산을 이용한 동북아지역의 장거리 수송되는 이산화황 유입량 산출)

  • Park, Junsung;Hong, Hyunkee;Choi, Wonei;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.743-754
    • /
    • 2014
  • In this present paper, we, for the first time, calculated $SO_2$ inflow from China to Korea peninsula based on OMI $SO_2$ products and HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) backward trajectory calculations. The major factors used to estimate $SO_2$ flux are long range transported $SO_2$ concentration, transport speed of air mass, and thickness of transported air mass layer. The mean and maximum $SO_2$ fluxes are estimated to be 0.81 and $2.11g{\cdot}m^{-2}{\cdot}h^{-1}$, respectively based on OMI products while, those of $SO_2$ fluxes are 0.50 and $1.18g{\cdot}m^{-2}{\cdot}h^{-1}$ respectively using insitu data obtained at the surface. For most cases, larger $SO_2$ inflow values were found at the surface than those estimated for the air mass layer which extends from surface up to 1.5 km. However, increased transport speed of air mass leads to the enhanced $SO_2$ flux at the altitude up to 1.5 km at the receptor sites. Additionally, we calculate uncertainties of $SO_2$ flux using error propagation method.

Detection and Analysis of Three-dimensional Changes in Haeundae Marine and Beach Topography using RS and GIS Technology (RS.GIS 기법을 활용한 해운대 해저.해빈지형의 3차원 입체변화 탐지 및 분석)

  • Hong, Hyun-Jung;Choi, Chul-Uong;Han, Kyung-Soo;Jeon, Seong-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.243-253
    • /
    • 2006
  • As the ocean and beaches have suffered from the losses of sand, it is necessary to monitor the zones that are prone to erosion continuously with the object of the long-term management. However, each ward offices are busy trying to supply sand without analyzing the marine and beach topographic changes. Therefore a long term effect of erosion has not been shown. In this study, we proposed methods to collect accurate spatial data of the oceans and beaches through sounding and GPS surveys, and detected and analyzed topographic changes quantitatively and qualitatively, by using an integrated RS and GIS techniques. The result of this study revealed that the marine topography has been eroded for 25 years, because of the straight construction of the river and the vast development of urban features, in addition with change of the mean depth 0.40 m, the water surface area 11,028 $m^2$, and submarine volume 2,207,884 $m^3$. The beach topography has accreted for 5 years and the change of the mean elevation is 0.27m, the area 6,501 $m^2$, and volume 25,667 $m^3$, because of the installation of geogrids and the seasonal effect. We conducted monitoring works on the topographic survey of the ocean and beaches and analyzed the present condition of the coastal erosions. Therefore, it is estimated that necessary information on the supply of sand, the safe marine leisure and the management of bating place could be provided.

Evaluation of Rededge-M Camera for Water Color Observation after Image Preprocessing (영상 전처리 수행을 통한 Rededge-M 카메라의 수색 관측에의 활용성 검토)

  • Kim, Wonkook;Roh, Sang-Hyun;Moon, Yongseon;Jung, Sunghun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.167-175
    • /
    • 2019
  • Water color analysis allows non-destructive estimation of abundance of optically active water constituents in the water body. Recently, there have been increasing needs for light-weighted multispectral cameras that can be integrated with low altitude unmanned platforms such as drones, autonomous vehicles, and heli-kites, for the water color analysis by spectroradiometers. This study performs the preprocessing of the Micasense Rededge-M camera which recently receives a growing attention from the earth observation community for its handiness and applicability for local environment monitoring, and investigates the applicability of Rededge-M data for water color analysis. The Vignette correction and the band alignment were conducted for the radiometric image data from Rededge-M, and the sky, water, and solar radiation essential for the water color analysis, and the resultant remote sensing reflectance were validated with an independent hyperspectral instrument, TriOS RAMSES. The experiment shows that Rededge-M generally satisfies the basic performance criteria for water color analysis, although noticeable differences are observed in the blue (475 nm) and the near-infrared (840 nm) band compared with RAMSES.

Steep Slope Management System integrated with Realtime Monitoring Information into 3D Web GIS (상시계측센서정보와 3차원 Web GIS를 융합한 급경사지관리시스템)

  • Chung, Dong Ki;Sung, Jae Ryeol;Lee, Dong Wook;Chang, Ki Tae;Lee, Jin Duk
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.3
    • /
    • pp.9-17
    • /
    • 2013
  • Geospatial information data came recently in use to build the location-based service in various fields. These data were shown via a 2-D map in the past but now can be viewed as a 3-D map due to the dramatic evolution of IT technology, thus improving efficiency and raising practicality to a greater extent by providing a more realistic visualization of the field. In addition, many previous GIS applications have been provided under desktop environment, limiting access from remote sites and reducing its approachability for less experienced users. The latest trend offers service with web-based environment, providing efficient sharing of data to all users, both unknown and specific internal users. Therefore, real-time information sensors that have been installed on steep slopes are to be integrated with 3-D geospatial information in this study. It is also to be developed with web-based environment to improve usage and access. There are three steps taken to establish this system: firstly, a 3-D GIS database and 3-D terrain with higher resolution aerial photos and DEM (Digital Elevation Model) have been built; secondly, a system architecture was proposed to integrate real-time sensor information data with 3D Web-based GIS; thirdly, the system has been constructed for Gangwon Province as a test bed to verify the applicability.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.

Smart Browser based on Semantic Web using RFID Technology (RFID 기술을 이용한 시맨틱 웹 기반 스마트 브라우저)

  • Song, Chang-Woo;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.37-44
    • /
    • 2008
  • Data entered into RFID tags are used for saving costs and enhancing competitiveness in the development of applications in various industrial areas. RFID readers perform the identification and search of hundreds of objects, which are tags. RFID technology that identifies objects on request of dynamic linking and tracking is composed of application components supporting information infrastructure. Despite their many advantages, existing applications, which do not consider elements related to real.time data communication among remote RFID devices, cannot support connections among heterogeneous devices effectively. As different network devices are installed in applications separately and go through different query analysis processes, there happen the delays of monitoring or errors in data conversion. The present study implements a RFID database handling system in semantic Web environment for integrated management of information extracted from RFID tags regardless of application. Users’ RFID tags are identified by a RFID reader mounted on an application, and the data are sent to the RFID database processing system, and then the process converts the information into a semantic Web language. Data transmitted on the standardized semantic Web base are translated by a smart browser and displayed on the screen. The use of a semantic Web language enables reasoning on meaningful relations and this, in turn, makes it easy to expand the functions by adding modules.

Enhancement of Ozone and Carbon Monoxide Associated with Upper Cut-off Low during Springtime in East Asia

  • Moon, Yun-Seob;Drummond, James R.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.475-489
    • /
    • 2010
  • In order to verify the enhancement of ozone and carbon monoxide (CO) during springtime in East Asia, we investigated weather conditions and data from remote sensors, air quality models, and air quality monitors. These include the geopotential height archived from the final (FNL) meteorological field, the potential vorticity and the wind velocity simulated by the Meteorological Mesoscale Model 5 (MM5), the back trajectory estimated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the total column amount of ozone and the aerosol index retrieved from the Total Ozone Mapping Spectrometer (TOMS), the total column density of CO retrieved from the Measurement of Pollution in the Troposphere (MOPITT), and the concentration of ozone and CO simulated by the Model for Ozone and Related Chemical Tracers (MOZART). In particular, the total column density of CO, which mightoriginate from the combustion of fossil fuels and the burning of biomass in China, increased in East Asia during spring 2000. In addition, the enhancement of total column amounts of ozone and CO appeared to be associated with both the upper cut-off low near 500 hPa and the frontogenesis of a surface cyclone during a weak Asian dust event. At the same time, high concentrations of ozone and CO on the Earth's surface were shown at the Seoul air quality monitoring site, located at the surface frontogenesis in Korea. It was clear that the ozone was invaded by the downward stretched vortex anomalies, which included the ozone-rich airflow, during movement and development of the cut-off low, and then there was the catalytic photochemical reaction of ozone precursors on the Earth's surface during the day. In addition, air pollutants such as CO and aerosol were tracked along both the cyclone vortex and the strong westerly as shown at the back trajectory in Seoul and Busan, respectively. Consequently, the maxima of ozone and CO between the two areas showed up differently because of the time lag between those gases, including their catalytic photochemical reactions together with the invasion from the upper troposphere, as well as the path of their transport from China during the weak Asian dust event.