• Title/Summary/Keyword: Remote measurement

Search Result 797, Processing Time 0.026 seconds

Remote Distance Measurement from a Single Image by Automatic Detection and Perspective Correction

  • Layek, Md Abu;Chung, TaeChoong;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3981-4004
    • /
    • 2019
  • This paper proposes a novel method for locating objects in real space from a single remote image and measuring actual distances between them by automatic detection and perspective transformation. The dimensions of the real space are known in advance. First, the corner points of the interested region are detected from an image using deep learning. Then, based on the corner points, the region of interest (ROI) is extracted and made proportional to real space by applying warp-perspective transformation. Finally, the objects are detected and mapped to the real-world location. Removing distortion from the image using camera calibration improves the accuracy in most of the cases. The deep learning framework Darknet is used for detection, and necessary modifications are made to integrate perspective transformation, camera calibration, un-distortion, etc. Experiments are performed with two types of cameras, one with barrel and the other with pincushion distortions. The results show that the difference between calculated distances and measured on real space with measurement tapes are very small; approximately 1 cm on an average. Furthermore, automatic corner detection allows the system to be used with any type of camera that has a fixed pose or in motion; using more points significantly enhances the accuracy of real-world mapping even without camera calibration. Perspective transformation also increases the object detection efficiency by making unified sizes of all objects.

Automation of Roadway Lighting Illuminance Measurement

  • BAO, Jieyi;HU, Xiaoqiang;JIANG, Yi;LI, Shuo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.705-711
    • /
    • 2022
  • Roadway lighting is an integral element of a highway system. Luminaires on roadways provide viewing conditions for drivers and pedestrians during nighttime in order to improve safety. It is time-consuming and labor-intensive to manually measure roadway illuminance at predetermined spots with a handheld illuminance meter. To improve the efficiency of illuminance measurement, a remote-control electrical cart and a drone were utilized to carry an illuminance meter for the measurements. The measurements were performed on the marked grid points along the pavement. To measure the illuminance manually, one person measures illuminance at each grid point with the handheld meter and another person records the illuminance value. To measure the illuminance with the remote-control cart, the illuminance meter is attached to the cart and it measures illuminance values continuously as the cart moves along the grid lines. With the drone, the meter records the illuminance continuously as the drone carries the meter and flies along the grid line. Because the drone can fly at different heights, the measurements can be done at different altitudes. The illuminance measurements using the cart and the drone are described in detail and compared with manual measurements in this paper. It is shown through this study that automated measurements can greatly improve the efficiency of roadway illuminance data measurements.

  • PDF

Development of Remote Data Analysis System for the Joint Use of Equipments (분석기기지원을 위한 원격 데이터 분석 시스템 개발)

  • 최인식
    • Journal of Korea Technology Innovation Society
    • /
    • v.2 no.3
    • /
    • pp.94-106
    • /
    • 1999
  • In Korea Basic Science Institute(KBSI) the remote data analysis system is developed for the joint use of advanced equipments. This system enables the researchers to access the datas which are produced at KBSI and analyse them by Java program on the Web,. Except Web browser such as Internet Explorer or Netscape Navigator no additional softwares are required for analysing data. We have developed remote data analysis systems for five major equipments which KBSI supports for the researchers, The systems which are developed are those for NMR spectrometer High Reso-lution Tandem mass Spectrometer Microscopic Imaging System DNA Sequencer and Natural Ra-dioactivity Measruement System, These programs work on any computer platform and any operat-ing system only if the internet is available. This remote data analysis system will be served as a part of Collaboratory the remote collaborative system.

  • PDF

Case study on the Accuracy Assessment of the rainrate from the Precipitation Radar of TRMM Satellite over Korean Peninsula

  • Chung, Hyo-Sang;Park, Hye-Sook;Noh, Yoo-Jeong
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.103-106
    • /
    • 1999
  • The Tropical Rainfall Measuring Mission(TRMM) is a United States-Japan project for rain measurement from space. The first spaceborne Precipitation Radar(PR) has been installed aboard the TRMM satellite. The ground based validation of the TRMM satellite observations was conducted by TRMM science team through a Global Validation Program(GVP) consisted of 10 or more ground validation sites throughout the tropics. However, TRMM radar should always be validated and assessed against reference data to be used in Korean Peninsula because the rainrates measured with satellite varies by time and space. We have analyzed errors in the comparison of rainrates measured with the TRMM/PR and the ground-based instrument i.e. Automatic Weather System(AWS) by means of statistical methods. Preliminary results show that the near surface rainrate of TRMM/PR are highly correlated with ground measurements especially for the very deep convective rain clouds, though the correlation is changed according to the type and amount of precipitating clouds. Results also show that TRMM/PR instrument is inclined to underestimate the rainrate on the whole over Korea than the AWS measurement for the cases of heavy rainfall.

  • PDF

Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System (중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.408-411
    • /
    • 2017
  • In this paper, we propose an integrated control system that measures neutrons, gamma ray, and x-ray. The proposed system is able to monitor and control the data measured and analyzed on the remote or network, and can monitor and control the status of each part of the system remotely without remote control. The proposed system consists of a gamma ray/x-ray sensor part, a neutron sensor part, a main control embedded system part, a dedicated display device and GUI part, and a remote UI part. The gamma ray/x-ray sensor part measures gamma ray and x-ray of low level by using NaI(Tl) scintillation detector. The neutron sensor part measures neutrons using Proportional Counter Detector(low-level neutron) and Ion Chamber Type Detector(high-level neutron). The main control embedded system part detects radiation, samples it in seconds, and converts it into radiation dose for accumulated pulse and current values. The dedicated display device and the GUI part output the radiation measurement result and the converted radiation amount and radiation amount measurement value and provide the user with the control condition setting and the calibration function for the detection part. The remote UI unit collects and stores the measured values and transmits them to the remote monitoring system. In order to evaluate the performance of the proposed system, the measurement uncertainty of the neutron detector was measured to less than ${\pm}8.2%$ and the gamma ray and x-ray detector had the uncertainty of less than 7.5%. It was confirmed that the normal operation was not less than ${\pm}15$ percent of the international standard.

AN INVERSTIGATION OF THE DYNAMIC ERRORS OF THE REMOTE-INSTANTANEOUS FLOWRATE MEASUREMENT DUE TO PARAMETER CHANGES

  • Kim, Do-Tae;Yokota, Shinichi;Nakano, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1712-1717
    • /
    • 1991
  • The paper describes estimation errors of unsteady flowrate measurements due to parameter changes in a quasi-remote instantaneous flowrate measurement method (abbreviate as QIFM) and an instantaneous flowrate measurement method using two points pressure measurements (abbreviate as TPFM). By introducing error performance index, the influence of parameter changes on the accuracy, and dynamic response of the estimated unsteady flowrate are evaluated. Of four parameters, the variation of the length of the pipeline and speed of sound produce large errors in the estimated unsteady flowrate during transient periods. The effect of kinematic viscosity of the working fluid(oil) is relatively insensitive in unsteady flowrate estimation.

  • PDF

Design of a Remote Measurement System via Embedded Internet (임베디드 인터넷을 이용한 원격검침장치 설계)

  • 박재삼
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.10
    • /
    • pp.723-730
    • /
    • 2003
  • In this paper, new structures of embedded internet remote measurement systems are developed. The systems can acquire data, measured from most types of domestic meters, via internet. Due to the measured data can be transferred and stored into a server computer via internet, the measured data can be data based automatically Thus, measurement time and coasts can be reduced greatly. The data base and monitoring programs are developed under Widows environment. To test the developed system, it has been applied into digital calorimeters The results show that the developed system can directly be applicable into the real industrial field.

  • PDF

Mass Standards Calibration through Internet (인터넷을 이용한 표준분동 교정 활용)

  • 이우갑;정진완;김광표
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1109-1112
    • /
    • 2003
  • Information technology has enabled mass standards calibration to be performed through internet. For this, an automatic weight handler was manufactured. During the operation the images of weight operation and the system are provided via the measurement system and a web server. The measurement system consists of a balance, a weight handler, instruments for environment measurement and a PC. The weight handler automatically loads and unloads weights on and from the weighing pan. The weight handler allows 6 series weights to be operated for weight calibration of 100-50-20-20-10-10 gram series weight. This capability could be used for "remote training" for series weight calibration.

  • PDF

Construction of Spatiotemporal Big Data Using Environmental Impact Assessment Information

  • Cho, Namwook;Kim, Yunjee;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.637-643
    • /
    • 2020
  • In this study, the information from environmental impact statements was converted into spatial data because environmental data from development sites are collected during the environmental impact assessment (EIA) process. Spatiotemporal big data were built from environmental spatial data for each environmental medium for 2,235 development sites during 2007-2018, available from public data portals. Comparing air-quality monitoring stations, 33,863 measurement points were constructed, which is approximately 75 times more measurement points than that 452 in Air Korea's real-time measurement network. Here, spatiotemporal big data from 2,677,260 EIAs were constructed. In the future, such data might be used not only for EIAs but also for various spatial plans.

Object Dimension Estimation for Remote Visual Inspection in Borescope Systems

  • Kim, Hyun-Sik;Park, Yong-Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4160-4173
    • /
    • 2019
  • Borescopes facilitate the inspection of areas inside machines and systems that are not directly accessible for visual inspection. They offer real-time, up-close access to confined and hard-to-access spaces without having to dismantle or destructure the object under inspection. Borescopes are ideal instruments for routine maintenance, quality inspection and monitoring of systems and structures. The main application being fault or defect detection, it is useful to have measuring capability to quantify object dimensions in a target area. High-end borescopes use multi-optic solutions to provide measurement information of viewed objects. Multi-optic solutions can provide accurate measurements at the expense of structural complexity and cost increase. Measuring functionality is often unavailable in low-end, single camera borescopes. In this paper, a single camera measurement solution that enables the size estimation of viewed objects is proposed. The proposed solution computes and overlays a scaled grid of known spacing value over the screen view, enabling the human inspector to estimate the size of the objects in view. The proposed method provides a simple means of measurement that is applicable to low-end borescopes with no built-in measurement capability.