• Title/Summary/Keyword: Remote driving

Search Result 147, Processing Time 0.029 seconds

스마트 팜의 자동 제어를 위한 AMCS(Agricultural Machine Control System) 설계 (A Design of AMCS(Agricultural Machine Control System) for the Automatic Control of Smart Farms)

  • 정이나;이병관;안희학
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.201-210
    • /
    • 2019
  • 본 논문에서는 농장의 위성 사진 혹은 드론 사진을 이용하여 농장을 구분하고 농장 드론과 트랙터의 자율주행 및 행동을 제어하는 'AMCS(Agricultural Machine Control System)'를 제안한다. AMCS는 드론과 트랙터의 센서 데이터 및 비디오 영상 데이터로부터 농장 경계를 구분하고, 메인 서버에서 원격 제어 명령어를 읽어 들인 후 드론 및 트랙터 스프링클러와의 연동을 통해, 관리지역 내의 원격 제어 명령을 전달하는 'LSM(Local Server Module)'과 드론과 트랙터가 농장 밖에서 농장으로 이동하는 경로와 농장 안에서 저비용, 고효율로 일을 처리할 수 있는 경로를 설정하는 'PSM(Path Setting Module)'으로 구성된다. 본 논문에서 제안하는 AMCS의 성능분석 결과 AMCS의 PSM은 외부 출발점에서 농장까지 도달하는 경로를 설정할 때 다익스트라 알고리즘보다 약 100% 향상된 성능을 보였으며, 농장 내부 작업 경로를 설정할 때 기존 경로보다 약 13% 높은 작업 효율을 보였고 36% 낮은 작업 거리를 설정했다. 따라서 PSM은 기존 방식보다 더 효율적으로 트랙터와 드론을 제어할 수 있다.

다중협업이 가능한 AR 기반 화학공정 운전원 교육 시뮬레이터(OTS-Simulator) 개발 (Development on AR-Based Operator Training Simulator(OTS) for Chemical Process Capable of Multi-Collaboration)

  • 이준서;마병철;안수빈
    • 융합정보논문지
    • /
    • 제12권1호
    • /
    • pp.22-30
    • /
    • 2022
  • 인적오류로 발생하는 화학사고를 예방하고자 첨단 기술을 응용한 화학사고 예방 및 대응 훈련 프로그램을 개발하였다. 기존에 구축된 파일롯 플랜트(pilot plant)를 바탕으로 가상의 공정을 설계한 후, 화학사고 대응 컨텐츠를 개발하였다. 컨텐츠 구현을 위하여 파일롯 설비 일부를 개조하여 원격제어기능을 부여하였다. 또한, 가상환경에서 설비를 제어할 수 있는 DCS 프로그램을 개발하였으며, AR과 연동하여 최종적으로 가상의 화학사고를 대응할 수 있는 화학공정 운전원 교육(OTS)을 개발하였다. 이를 통해 훈련자가 직접 장치를 조작해봄으써 운전역량을 쌓을 수 있고, 가상의 화학사고를 대응함으로써 비상시 대처능력을 기를 수 있었다. 본 연구와 같은 차세대 OTS가 화학산업에 널리 보급된다면 인적오류에 의한 화학사고를 예방하는데 크게 기여할 것으로 기대된다.

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • 대한원격탐사학회지
    • /
    • 제39권1호
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.

WebRTC를 이용한 육안 검사 및 청진용 원격진료 로봇 시스템 (Telemedicine robot system for visual inspection and auscultation using WebRTC)

  • 박재삼
    • 한국항행학회논문지
    • /
    • 제27권1호
    • /
    • pp.139-145
    • /
    • 2023
  • 의사가 병원에서 환자를 진찰할 때 의사는 환자의 상태를 직접 확인하고 환자와의 대화를 통해 대면 진단을 한다. 그러나 의사가 환자를 직접 진료하기 어려운 경우가 많다. 최근에는 여러 유형의 원격 의료 시스템이 개발되었다. 그러나 현존하는 많은 시스템이 심장질환, 목상태, 피부상태, 귀의 내부상태 등을 관찰할 수 있는 능력이 부족하다. 이러한 문제를 해결하기 위하여 본 논문에서는 환자의 육안 검사와 청진이 가능하도록 실내에서 자율주행이 가능한 대화형 원격진료 로봇 시스템을 개발한다. 개발된 로봇은 WebRTC 플랫폼을 통해 원격 제어가 가능하도록 다관절 로봇팔을 이용해 의사의 관찰 하에 환자에게 다가가 환자의 상태를 확인할 수 있다. 환자로부터 원격으로 얻은 영상 정보, 음성 정보, 환자의 심음 및 기타 데이터를 WebRTC 플랫폼을 통해 의사에게 전송할 수 있다. 개발된 시스템은 의사가 참석할 수 없는 다양한 장소에 적용이 가능하다.

Long-Term Analysis of Tropical Cyclones in the Southwest Pacific and Influences on Tuvalu from 2000 to 2021

  • Sree Juwel Kumar Chowdhury;Chan-Su Yang
    • 대한원격탐사학회지
    • /
    • 제39권4호
    • /
    • pp.441-458
    • /
    • 2023
  • Tropical cyclones frequently occur in the Southwest Pacific Ocean and are considered one of the driving forces for coastal alterations. Therefore, this study investigates the frequency and intensity of tropical cyclonesfrom 2000 to 2021 and their influence on the surface winds and wave conditions around the atoll nation Tuvalu. Cyclone best-track and ERA5 single-level reanalysis data are utilized to analyze the condition of the surface winds, significant wave heights, mean wave direction, and mean wave period. Additionally, the scatterometer-derived wind information was employed to compare wind conditions with the ERA5 data. On average, nine cyclones per year originated here, and the frequency increased to 11 cyclones during the last three years while the intensity decreased by 25 m/s (maximum sustained wind speed). Besides, a total of 14 cyclones were observed around Tuvalu during the period from 2015 to 2021, which showed an increase of 3 cyclones compared to the preceding period of 2001 to 2007. During cyclones, the significant wave height reached the highest 4.8 m near Tuvalu, and the waves propagated in the east-southeast direction during most of the cyclone events (52%). In addition, prolonged swells with a mean wave period of 7 to 11 seconds were generated in the vicinity of Tuvalu, for which coastal alteration can occur. After this preliminary analysis, it was found that the waves generated by cyclones have a crucial impact in altering the coastal area of Tuvalu. In the future, remotely sensed high-resolution satellite data with this wave information will be used to find out the degree of alterations that happened in the coastal area of Tuvalu before and after the cyclone events.

ASV용 센서통합평가 기술을 위한 무인 타겟 이동 시스템의 개발 (Development of an Automatic Unmanned Target Object Carrying System for ASV Sensor Evaluation Methods)

  • 김은정;송인성;유시복;김병수
    • 자동차안전학회지
    • /
    • 제4권2호
    • /
    • pp.32-36
    • /
    • 2012
  • The Automatic unmanned target object carrying system (AUTOCS) is developed for testing road vehicle radar and vision sensor. It is important for the target to reflect the realistic target characteristics when developing ASV or ADAS products. The AUTOCS is developed to move the pedestrian or motorcycle target for desired speed and position. The AUTOCS is designed that only payload target which is a manikin or a motorcycle is detected by the sensor not the AUTOCS itself. In order for the AUTOCS to have low exposure to radar, the AUTOCS is stealthy shaped to have low RCS(Radar Cross Section). For deceiving vision sensor, the AUTOCS has a specially designed pattern on outside skin which resembles the asphalt pattern. The AUTOCS has three driving modes which are remote control, path following and replay. The AUTOCS V.1 is tested to verify the radar detect characteristics, and the AUTOCS successfully demonstrated that it is not detected by a car radar. The result is presented in this paper.

무선통신을 이용한 원격 차량운행정보 저장시스템 개발 (Development of Remote Vehicle Information Storage System Using Wireless Communication)

  • 이중현;고국원;최병욱;고경철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.576-579
    • /
    • 2004
  • Recently, using GPS and equipment that recognizes the position of the car such a computer system inside the car are very universalized. Specially, the technique that diagnoses troubles and prevents troubles through scanning engine ECU is very popularized also. However, because these data have to be directly transferred and received from the car, in cases of traffic accident such as serious damage or car theft, it is impossible to receive the data at the time of accident. In order to receive and preserve the data safely regardless of these situations, it is possible to provide data for analyzing reasons of accident and prevent accidents from occurring by using wireless communication to receive the transferred information of the car, then saving into a Database system DB, or grasping the situation of the car and the driving pattern of drivers through analyzing stored data. Moreover, due to developing some related services such as providing the information about the real time of the accident, diagnoses of the car and alarms, etc. It is expected to contribute to creating added values.

  • PDF

Networked Intelligent Motor-Control Systems Using LonWorks Fieldbus

  • 홍원표
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 학술대회 논문집
    • /
    • pp.365-370
    • /
    • 2004
  • The integration of intelligent devices, devices-level networks, and software into motor control systems can deliver improved diagnostics, fast warnings for increased system reliability, design flexibility, and simplified wiring. Remote access to motor-control information also affords an opportunity for reduced exposure to hazardous voltage and improved personnel safety during startup and trouble-shooting. This paper presents LonWorks fieldbus networked intelligent induction control system architecture. Experimental bed system with two inverter motor driving system for controlling 1.5kW induction motor is configured for LonWorks networked intelligent motor control. In recent years, MCCs have evolved to include component technologies, such as variable-speed drives, solid-state starters, and electronic overload relays. Integration was accomplished through hardwiring to a programmable logic controller (PLC) or distributed control system (DCS). Devicelevel communication networks brought new possibilities for advanced monitoring, control and diagnostics. This LonWorks network offered the opportunity for greatly simplified wiring, eliminating the bundles of control interwiring and corresponding complex interwiring diagrams. An intelligent MCC connected in device level control network proves users with significant new information for preventing or minimizing downtime. This information includes warnings of abnormal operation, identification of trip causes, automated logging of events, and electronic documentation. In order to show the application of the multi-motors control system, the prototype control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using LonWorks network.

  • PDF

$6{\times}6$ 가변 현수형 무인차량의 주행 분석 및 제어에 관한 연구 (Study on Vehicle Motion Analysis and Control for Skid Steering UGVs with Articulating Arms)

  • 강신천;허진욱;이상훈;지태영
    • 한국군사과학기술학회지
    • /
    • 제14권5호
    • /
    • pp.747-752
    • /
    • 2011
  • Recently, skid steering methods have been increasingly applied to unmanned ground vehicles since they can provide a narrow turn that general steering methods like ackerman steering may not provide. However, dynamic behaviors of the skid steering vehicles with articulating arms which occur during a steering are very complicated and coupled. This makes it difficult to control vehicles and in severe case vehicles may loose stability. There are two methods to control unmanned ground vehicles. The first one is speed control method generally used with easiness and robustness in remote vehicle control. The next one is torque control allowing the vehicles to get better performance in several cases provided careful application is achieved. This paper addresses dynamic phenomena of skid steering vehicles during steering and compares with vehicle driving control methods between torque(traction force) control and speed control.

밭 노지 환경 주행을 위한 모듈형 농업 로봇 플랫폼에 대한 연구 (A Study on Modular Agricultural Robotic Platform for Upland)

  • 조용준;우성용;송수환;홍형길;윤해룡;오장석;김준성;김동우;서갑호;김대희
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.124-130
    • /
    • 2020
  • This paper designed modular agricultural robotic platform capable of a variety of agricultural tasks to address the problems caused by a decline in agricultural populations and an increase in average age. We propose a modular robotic platform that can perform many tasks required in field farming by replacing only work modules with common robotic platforms. This platform is capable of steering while driving on four wheels in an upland environment where farm work is performed, and an attitude control module is attached to each drive module to control the attitude of the platform. In addition, the width of the platform is designed to be variable in order to operate in various ridges according to the crop cultivation method. Finally, we evaluated five items: variable width, gradient, attitude control angle, step and road speed in order to carry out the farming industry while maintaining a stable posture.