• Title/Summary/Keyword: Remote control robot

Search Result 327, Processing Time 0.031 seconds

Remote Controlled Robot System using Real-Time Operating System (실시간 운영체제를 탑재한 원격 제어 로봇 시스템)

  • Lee, Tae-Hee;Cho, Sang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.689-695
    • /
    • 2004
  • This paper presents a robot system that combines computer network and an autonomous mobile robot where RTOS is installed. We propose a wireless communication protocol, and also implement it on the RTOS of the robot system. Main controller of the robot processes the control program as a task type in the real-time operating system. Peripheral devices are driven by the device driver functions with the dependency of the hardware. Because the client and server program was implemented to support the multi-platforms by Java SDK and Java JMF, it is easy to analyze programs, maintain system, and correct the errors in the system. End-user can control a robot with a vision showing remote sight over the Internet in real time, and the robot is moved keeping away from the obstacles by itself and command of the server received from end-user at the local client.

Touch-based Moving Trajectory Generation and Data Acquisition of a Mobile Robot using a Smart Phone (스마트폰을 이용한 이동로봇의 터치기반 주행궤적 생성 및 데이터 획득)

  • Jung, Hyo-Young;Lee, Chung-Sub;Seo, Yong-Ho;Yang, Tae-Kyu
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.3
    • /
    • pp.98-102
    • /
    • 2011
  • This paper proposes a method of a touch-based remote control and sensor information acquisition of a mobile robot using a smart phone. An application in a smart phone processes the acquired sensor information and conducts autonomous navigation. By touching the screen of the smart phone, a series of points obtained from designated curve traces are analyzed and provide control of a robot. This study develops a mobile application that acquires and handles data from a mobile robot and sends appropriate action commands through remote control using Bluetooth communication with a smart phone. The utility and performance of the proposed control scheme have been successfully verified through experimental tasks using an actual smart phone and a mobile robot.

  • PDF

Internet Based Remote Control of a Mobile Robot (인터넷 기반 이동로봇의 원격제어)

  • Choi, Mi-Young;Park, Jang-Hyun;Kim, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.502-504
    • /
    • 2004
  • With rapidly growing of computer and internet technology, Internet-based tote-operation of robotic systems has created new opportunities in resource sharing, long-distance learning, and remote experimentation. In this paper, remote control system of a mobile robot through the internet has been designed. The internet users can access and command a mobile robot in the real time, receiving the robot's sensor data. The overall system has been tested and its usefulness shown through the experimental results.

  • PDF

Study on Direct Teaching Algorithm for Remote Center Motion of Surgical Assistant Robot using Force/Torque Sensor (힘/토크 센서를 이용한 수술보조로봇의 원격중심운동 직접교시 알고리즘 연구)

  • Kim, Minhyo;Jin, Sangrok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.309-315
    • /
    • 2020
  • This study shows a control strategy that acquires both precision and manipulation sensitivity of remote center motion with manual traction for a surgical assistant robot. Remote center motion is an essential function of a laparoscopic surgical robot. The robot has to keep the position of the insertion port in a three-dimensional space, and general laparoscopic surgery needs 4-DoF (degree-of-freedom) motions such as pan, tilt, spin, and forward/backward. The proposed robot consists of a 6-axis collaborative robot and a 2-DoF end-effector. A 6-axis collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector maintaining the position of remote center. An end-effector deals with the remaining 2-DoF movement. The most intuitive way a surgeon manipulates a robot is through direct teaching. Since the accuracy of maintaining the remote center position is important, direct teaching is implemented based on position control in this study. A force/torque sensor which is attached to between robot and end-effector estimates the surgeon's intention and generates the command of motion. The predefined remote center position and the pan and tilt angles generated from direct teaching are input as a command for position control. The command generation algorithm determines the direct teaching sensitivity. Required torque for direct teaching and accuracy of remote center motion are analyzed by experiments of panning and tilting motion.

User interface for remote control robot

  • Kim, Gi-Oh;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.52-56
    • /
    • 2005
  • The recent growth of the robot technology has made robots be popular and provides people with many opportunities to apply various robots. But most robots are controlled by its unique program, users feel hard and unfamiliar with robot. Therefore we need to find ways to make user feel comfortable and familiar with the usage of robot. First we will analyze how the user interacts with the robot. Next we will discuss a standard human-robot interface provide more usability with that analysis. In this paper, 10 degree of the Level Of Autonomy(LOA) are proposed. It is evaluated that what interface components and designs are proper to each LOA. Finally we suggest a way to design the standard human-robot interface for remote controlleds robot through handheld devices like the Personal Digital Assistant(PDA) and smart phone.

  • PDF

Safety Enhancement of Teleoperation using Haptic Control (햅틱 제어에 의한 원격작업의 안전성 향상)

  • Kim, Yun Bae;Choi, Gi Sang;Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.19-25
    • /
    • 2013
  • For safe remote control, information on remote environment has to be delivered to operator realistically, and there have been numerous research efforts on this respect. Among them, haptic technology can significantly enhance safety and overall effectiveness of remote operation by delivering various kinds of information on virtual or real environment to operator. In this study, remote control based on haptic feedback is applied to control of mobile robot moving according to the command from operator avoiding collision with environmental obstacles and maintaining safe distance from them using ultrasonic sensors. Specifically, a remote feedback control structure for mobile robot is proposed. The controller is based on the inner feedback loop that directly utilizes information on distance to obstacles, and the outer feedback loop that the operator directly commands using the haptic device on which the computed reaction force based on the distance information is acting. Effectiveness of the proposed remote control scheme using double feedback loops is verified through a series of experiments on mobile robot.

A Study on Tracking Control of Remote Operated Excavator for Field Robot (필드로봇용 원격 굴삭 시스템의 궤적제어에 관한 연구)

  • Yang, S.S.;Jin, S.M.;Choi, J.J.;Lee, C.D.;Kim, Y.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • Hydraulic excavators are the representative of field robot and have been used in various fields of construction. Since the excavator operates in the hazardous working environment, operators of excavator are exposed in harmful environment. Therefore, the hydraulic excavator automation and remote operation system has been investigated to protect from the hazardous working environment. In this paper, remote operation excavator system is developed using the mini hydraulic excavator and the tracking control system of each links of excavator is designed. To apply the tracking control system, the adaptive sliding mode control algorithm is proposed. It is found that the performance of the proposed control system is improved through experimental results of using the remote operation excavator system.

  • PDF

Remote Monitoring System for a Building Cleaning Mobile Robot (빌딩청소용 이동로봇을 위한 원격 모니터링 시스템)

  • Yi, Soo-Yeong;Cho, Won-Ho;Choi, Byoung-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.74-80
    • /
    • 2009
  • This paper presents a remote monitoring and simulation system for a building cleaning mobile robot. It provides a tool of convenient 3D graphical map construction including network camera image viewer and status information of the robot. The 3D map is reconstructed from existing 2D building CAD data with DXF format using OpenGL graphic API. Through this system, it is possible to monitor and control the cleaning mobile robot from remote place. A practical experiment is performed to show the reliability and convenience of the monitoring system. The proposed system is expected to give efficient way of control and monitoring to building cleaning mobile robot.

  • PDF

Remote robot system using Internet server (인터넷 서버 기반의 원격 로봇 시스템)

  • Lee, Tae-Hee;Cho, Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1434-1441
    • /
    • 2003
  • Recent technological advances in utilization and generalization of Internet have overcome some of the limitations of remote robot control range and real-time monitoring system. However, It needs Embedded system with control protocol or hardware which has avility to port the micro realtime operating system in robot control system communicate with remote controlled robot, because those system use the wireless LAM or Bluetooth as a network media. In this paper, we design and implement the wireless MODEM protocol and install it to the server system. Also, we implement a client system could control the remote robot through the server and we assure that this protocol and client/server system ate suitable for small size remote control system based on Internet.