• Title/Summary/Keyword: Remaining useful life (RUL)

Search Result 31, Processing Time 0.024 seconds

A Study on the Remaining Useful Life Prediction Performance Variation based on Identification and Selection by using SHAP (SHAP를 활용한 중요변수 파악 및 선택에 따른 잔여유효수명 예측 성능 변동에 대한 연구)

  • Yoon, Yeon Ah;Lee, Seung Hoon;Kim, Yong Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • Recently, the importance of preventive maintenance has been emerging since failures in a complex system are automatically detected due to the development of artificial intelligence techniques and sensor technology. Therefore, prognostic and health management (PHM) is being actively studied, and prediction of the remaining useful life (RUL) of the system is being one of the most important tasks. A lot of researches has been conducted to predict the RUL. Deep learning models have been developed to improve prediction performance, but studies on identifying the importance of features are not carried out. It is very meaningful to extract and interpret features that affect failures while improving the predictive accuracy of RUL is important. In this paper, a total of six popular deep learning models were employed to predict the RUL, and identified important variables for each model through SHAP (Shapley Additive explanations) that one of the explainable artificial intelligence (XAI). Moreover, the fluctuations and trends of prediction performance according to the number of variables were identified. This paper can suggest the possibility of explainability of various deep learning models, and the application of XAI can be demonstrated. Also, through this proposed method, it is expected that the possibility of utilizing SHAP as a feature selection method.

Fault state detection and remaining useful life prediction in AC powered solenoid operated valves based on traditional machine learning and deep neural networks

  • Utah, M.N.;Jung, J.C.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1998-2008
    • /
    • 2020
  • Solenoid operated valves (SOV) play important roles in industrial process to control the flow of fluids. Solenoid valves can be found in so many industries as well as the nuclear plant. The ability to be able to detect the presence of faults and predicting the remaining useful life (RUL) of the SOV is important in maintenance planning and also prevent unexpected interruptions in the flow of process fluids. This paper proposes a fault diagnosis method for the alternating current (AC) powered SOV. Previous research work have been focused on direct current (DC) powered SOV where the current waveform or vibrations are monitored. There are many features hidden in the AC waveform that require further signal analysis. The analysis of the AC powered SOV waveform was done in the time and frequency domain. A total of sixteen features were obtained and these were used to classify the different operating modes of the SOV by applying a machine learning technique for classification. Also, a deep neural network (DNN) was developed for the prediction of RUL based on the failure modes of the SOV. The results of this paper can be used to improve on the condition based monitoring of the SOV.

A study on Data Preprocessing for Developing Remaining Useful Life Predictions based on Stochastic Degradation Models Using Air Craft Engine Data (항공엔진 열화데이터 기반 잔여수명 예측력 향상을 위한 데이터 전처리 방법 연구)

  • Yoon, Yeon Ah;Jung, Jin Hyeong;Lim, Jun Hyoung;Chang, Tai-Woo;Kim, Yong Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.48-55
    • /
    • 2020
  • Recently, a study of prognosis and health management (PHM) was conducted to diagnose failure and predict the life of air craft engine parts using sensor data. PHM is a framework that provides individualized solutions for managing system health. This study predicted the remaining useful life (RUL) of aeroengine using degradation data collected by sensors provided by the IEEE 2008 PHM Conference Challenge. There are 218 engine sensor data that has initial wear and production deviations. It was difficult to determine the characteristics of the engine parts since the system and domain-specific information was not provided. Each engine has a different cycle, making it difficult to use time series models. Therefore, this analysis was performed using machine learning algorithms rather than statistical time series models. The machine learning algorithms used were a random forest, gradient boost tree analysis and XG boost. A sliding window was applied to develop RUL predictions. We compared model performance before and after applying the sliding window, and proposed a data preprocessing method to develop RUL predictions. The model was evaluated by R-square scores and root mean squares error (RMSE). It was shown that the XG boost model of the random split method using the sliding window preprocessing approach has the best predictive performance.

An improved regularized particle filter for remaining useful life prediction in nuclear plant electric gate valves

  • Xu, Ren-yi;Wang, Hang;Peng, Min-jun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2107-2119
    • /
    • 2022
  • Accurate remaining useful life (RUL) prediction for critical components of nuclear power equipment is an important way to realize aging management of nuclear power equipment. The electric gate valve is one of the most safety-critical and widely distributed mechanical equipment in nuclear power installations. However, the electric gate valve's extended service in nuclear installations causes aging and degradation induced by crack propagation and leakages. Hence, it is necessary to develop a robust RUL prediction method to evaluate its operating state. Although the particle filter(PF) algorithm and its variants can deal with this nonlinear problem effectively, they suffer from severe particle degeneracy and depletion, which leads to its sub-optimal performance. In this study, we combined the whale algorithm with regularized particle filtering(RPF) to rationalize the particle distribution before resampling, so as to solve the problem of particle degradation, and for valve RUL prediction. The valve's crack propagation is studied using the RPF approach, which takes the Paris Law as a condition function. The crack growth is observed and updated using the root-mean-square (RMS) signal collected from the acoustic emission sensor. At the same time, the proposed method is compared with other optimization algorithms, such as particle swarm optimization algorithm, and verified by the realistic valve aging experimental data. The conclusion shows that the proposed method can effectively predict and analyze the typical valve degradation patterns.

Large Language Model-based SHAP Analysis for Interpretation of Remaining Useful Life Prediction of Lithium-ion Battery (거대언어모델 기반 SHAP 분석을 이용한 리튬 이온 배터리 잔존 수명 예측 기법 해석)

  • Jaeseung Lee;Jehyeok Rew
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.5
    • /
    • pp.51-68
    • /
    • 2024
  • To safely operate lithium-ion batteries that power mobile electronic devices, it is crucial to accurately predict the remaining useful life (RUL) of the battery. Recently, with the advancement of machine learning technologies, artificial intelligence (AI)-based RUL prediction models for batteries have been actively researched. However, existing models have limitations as the reasoning process within the models is not transparent, making it difficult to fully trust and utilize the predicted values derived from machine learning. To address this issue, various explainable AI techniques have been proposed, but these techniques typically visualize results in the form of graphs, requiring users to manually analyze the graphs. In this paper, we propose an explainable RUL prediction method for lithium-ion batteries that interprets the reasoning process of the prediction model in textual form using SHAP analysis based on large language models (LLMs). Experimental results using publicly available lithium-ion battery datasets demonstrated that the LLM-based SHAP analysis enabled us to concretely understand the model's prediction rationale in textual form.

Internal parameter comparative analysis for the RUL of high-power lithium-ion battery (고출력 리튬이온 배터리의 RUL을 위한 내부 파라미터 변화 비교분석)

  • Kim, Y.S;kim, J.H;Lee, P.Y;Jang, M.H
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.311-312
    • /
    • 2016
  • 본 논문에서는 사이즈가 다른 고출력 원통형 리튬이온 배터리의 Remaining Useful Life(RUL)을 방전용량 기반으로 전기적 특성분석을 실시하였다. 우선, 배터리의 충/방전이 계속될 시 용량이 어떻게 변화하는지 실험해보았으며, 만충 전압(Fully Charged)에서 만방 전압(Fully Discharged) 까지의 각각의 State-Of-Charge(SOC)에서 Hybrid Pulse Power Characterization (HPPC) Test를 이용해 충전 저항과 방전 저항을 구하여, 용량과 저항의 관계를 파악하였으며, 배터리 RUL을 알기 위한 기본 정보를 확보했다.

  • PDF

Neuro Fuzzy System for the Estimation of the Remaining Useful Life of the Battery Using Equivalent Circuit Parameters (등가회로 파라미터를 이용한 배터리 잔존 수명 평가용 뉴로 퍼지 시스템)

  • Lee, Seung-June;Ko, Younghwi;Kandala, Pradyumna Telikicherla;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.167-175
    • /
    • 2021
  • Reusing electric vehicle batteries after they have been retired from mobile applications is considered a feasible solution to reduce the demand for new material and electric vehicle costs. However, the evaluation of the value and the performance of second-life batteries remain a problem that should be solved for the successful application of such batteries. The present work aims to estimate the remaining useful life of Li-ion batteries through the neuro-fuzzy system with the equivalent circuit parameters obtained by Electrochemical Impedance Spectroscopy (EIS). To obtain the impedance spectra of the Li-ion battery over the life, a 18650 cylindrical cell has been aged by 1035 charge/discharge cycles. Moreover, the capacity and the parameters of the equivalent circuit of a Li-ion battery have been recorded. Then, the data are used to establish a neuro-fuzzy system to estimate the remaining useful life of the battery. The experimental results show that the developed algorithm can estimate the remaining capacity of the battery with an RMSE error of 0.841%.

Remaining Useful Life Prediction of Li-Ion Battery Based on Charge Voltage Characteristics (충전 전압 특성을 이용한 리튬 이온 배터리의 잔존 수명 예측)

  • Sim, Seong Heum;Gang, Jin Hyuk;An, Dawn;Kim, Sun Il;Kim, Jin Young;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.313-322
    • /
    • 2013
  • Batteries, which are being used as energy sources in various applications, tend to degrade, and their capacity declines with repeated charging and discharging cycles. A battery is considered to fail when it reaches 80% of its initial capacity. To predict this, prognosis techniques are attracting attention in recent years in the battery community. In this study, a method is proposed for estimating the battery health and predicting its remaining useful life (RUL) based on the slope of the charge voltage curve. During this process, a Bayesian framework is employed to manage various uncertainties, and a Particle Filter (PF) algorithm is applied to estimate the degradation of the model parameters and to predict the RUL in the form of a probability distribution. Two sets of test data-one from the NASA Ames Research Center and another from our own experiment-for an Li-ion battery are used for illustrating this technique. As a result of the study, it is concluded that the slope can be a good indicator of the battery health and PF is a useful tool for the reliable prediction of RUL.

Deep Learning Approaches to RUL Prediction of Lithium-ion Batteries (딥러닝을 이용한 리튬이온 배터리 잔여 유효수명 예측)

  • Jung, Sang-Jin;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.21-27
    • /
    • 2020
  • Lithium-ion batteries are the heart of energy-storing devices and electric vehicles. Owing to their superior qualities, such as high capacity and energy efficiency, they have become quite popular, resulting in an increased demand for failure/damage prevention and useable life maximization. To prevent failure in Lithium-ion batteries, improve their reliability, and ensure productivity, prognosticative measures such as condition monitoring through sensors, condition assessment for failure detection, and remaining useful life prediction through data-driven prognostics and health management approaches have become important topics for research. In this study, the residual useful life of Lithium-ion batteries was predicted using two efficient artificial recurrent neural networks-ong short-term memory (LSTM) and gated recurrent unit (GRU). The proposed approaches were compared for prognostics accuracy and cost-efficiency. It was determined that LSTM showed slightly higher accuracy, whereas GRUs have a computational advantage.

A Particle Filtering Approach for On-Line Failure Prognosis in a Planetary Carrier Plate

  • Orchard, Marcos E.;Vachtsevanos, George J.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.221-227
    • /
    • 2007
  • This paper introduces an on-line particle-filtering-based framework for failure prognosis in nonlinear, non-Gaussian systems. This framework uses a nonlinear state-space model of the plant(with unknown time-varying parameters) and a particle filtering(PF) algorithm to estimate the probability density function(pdf) of the state in real-time. The state pdf estimate is then used to predict the evolution in time of the fault indicator, obtaining as a result the pdf of the remaining useful life(RUL) for the faulty subsystem. This approach provides information about the precision and accuracy of long-term predictions, RUL expectations, and 95% confidence intervals for the condition under study. Data from a seeded fault test for a UH-60 planetary carrier plate are used to validate the proposed methodology.