• 제목/요약/키워드: Reliability.

검색결과 26,995건 처리시간 0.048초

A New Methodology for Software Reliability based on Statistical Modeling

  • Avinash S;Y.Srinivas;P.Annan naidu
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.157-161
    • /
    • 2023
  • Reliability is one of the computable quality features of the software. To assess the reliability the software reliability growth models(SRGMS) are used at different test times based on statistical learning models. In all situations, Tradational time-based SRGMS may not be enough, and such models cannot recognize errors in small and medium sized applications.Numerous traditional reliability measures are used to test software errors during application development and testing. In the software testing and maintenance phase, however, new errors are taken into consideration in real time in order to decide the reliability estimate. In this article, we suggest using the Weibull model as a computational approach to eradicate the problem of software reliability modeling. In the suggested model, a new distribution model is suggested to improve the reliability estimation method. We compute the model developed and stabilize its efficiency with other popular software reliability growth models from the research publication. Our assessment results show that the proposed Model is worthier to S-shaped Yamada, Generalized Poisson, NHPP.

Developing the Accurate Method of Test Data Assessment with Changing Reliability Growth Rate and the Effect Evaluation for Complex and Repairable Products

  • So, Young-Kug;Ryu, Byeong-Jin
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제15권2호
    • /
    • pp.90-100
    • /
    • 2015
  • Reliability growth rate (or reliability growth curve slope) have the two cases of trend as a constant or changing one during the reliability growth testing. The changing case is very common situation. The reasons of reliability growth rate changing are that the failures to follow the NHPP (None-Homogeneous Poisson Process), and the solutions implemented during test to break out other problems or not to take out all of the root cause permanently. If the changing were big, the "Goodness of Fit (GOF)" of reliability growth curve to test data would be very low and then reduce the accuracy of assessing result with test data. In this research, we are using Duane model and AMSAA model for assessing test data and projecting the reliability level of complex and repairable system as like construction equipment and vehicle. In case of no changing in reliability growth rate, it is reasonable for reliability engineer to implement the original Duane model (1964) and Crow-AMSAA model (1975) for the assessment and projection activity. However, in case of reliability growth rate changing, it is necessary to find the method to increase the "GOF" of reliability growth curves to test data. To increase GOF of reliability growth curves, it is necessary to find the proper parameter calculation method of interesting reliability growth models that are applicable to the situation of reliability growth rate changing. Since the Duane and AMSAA models have a characteristic to get more strong influence from the initial test (or failure) data than the latest one, the both models have a limitation to contain the latest test data information that is more important and better to assess test data in view of accuracy, especially when the reliability growth rate changing. The main objective of this research is to find the parameter calculation method to reflect the latest test data in the case of reliability growth rate changing. According to my experience in vehicle and construction equipment developments over 18 years, over the 90% in the total development cases are with such changing during the developing test. The objective of this research was to develop the newly assessing method and the process for GOF level increasing in case of reliability growth rate changing that would contribute to achieve more accurate assessing and projecting result. We also developed the new evaluation method for GOF that are applicable to the both models as Duane and AMSAA, so it is possible to compare it between models and check the effectiveness of new parameter calculation methods in any interesting situation. These research results can reduce the decision error for development process and business control with the accurately assessing and projecting result.

신뢰성 기반 강건 최적화를 이용한 자동채염기의 확률론적 구조설계 (Probabilistic Structure Design of Automatic Salt Collector Using Reliability Based Robust Optimization)

  • 송창용
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.799-807
    • /
    • 2020
  • This paper deals with identification of probabilistic design using reliability based robust optimization in structure design of automatic salt collector. The thickness sizing variables of main structure member in the automatic salt collector were considered the random design variables including the uncertainty of corrosion that would be an inevitable hazardousness in the saltern work environment. The probabilistic constraint functions were selected from the strength performances of the automatic salt collector. The reliability based robust optimum design problem was formulated such that the random design variables were determined by minimizing the weight of the automatic salt collector subject to the probabilistic strength performance constraints evaluating from reliability analysis. Mean value reliability method and adaptive importance sampling method were applied to the reliability evaluation in the reliability based robust optimization. The three sigma level quality was considered robustness in side constraints. The probabilistic optimum design results according to the reliability analysis methods were compared to deterministic optimum design results. The reliability based robust optimization using the mean value reliability method showed the most rational results for the probabilistic optimum structure design of the automatic salt collector.

장애함수법에 의한 신뢰성기반 최적설계 (Barrier Function Method in Reliability Based Design Optimization)

  • 이태희;최운용;김홍선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

통행시간 신뢰성 가치에 관한 연구 (A Study of the Value of Travel Time Reliability)

  • 조한선
    • 한국도로학회논문집
    • /
    • 제15권4호
    • /
    • pp.155-165
    • /
    • 2013
  • PURPOSES : Benefits for improvement of travel time reliability obtained from construction of new highways should be considered as a major factor in the feasibility study for highway constructions. The purpose of this study is to develop a method of estimation for the value of travel time reliability. METHODS : Highway type (urban/rural highway) and traffic flow type(interrupted/uninterrupted) was considered to estimate he value of travel time reliability. And Double-bounded Dichotomous Choice among Contingent Valuation Method(CVM) was applied to survey the willingness-to-pay of drivers when travel time reliability is improved. Finally the value of travel time reliability was estimated using the results of survey and logit model. The value of travel time reliability was estimated considering travel objectives, time constraint travel and non-time constraint travel. RESULTS: The value of travel time reliability of business trip is higher than that of non-business trip. The value of travel time reliability of time constraint travel is higher than that of non-time constraint travel. The value of travel time reliability in urban area is higher than that in rural area. CONCLUSIONS: It was concluded that the proposed method in this study is more realistic and proper to estimate the value of travel time reliability because it reflects the situations of time constraint travel and non-time constraint travel.

Reliability-based design optimization using reliability mapping functions

  • Zhao, Weitao;Shi, Xueyan;Tang, Kai
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.125-138
    • /
    • 2017
  • Reliability-based design optimization (RBDO) is a powerful tool for design optimization when considering probabilistic characteristics of design variables. However, it is often computationally intensive because of the coupling of reliability analysis and cost minimization. In this study, the concept of reliability mapping function is defined based on the relationship between the reliability index obtained by using the mean value first order reliability method and the failure probability obtained by using an improved response surface method. Double-loop involved in the classical RBDO can be converted into single-loop by using the reliability mapping function. Since the computational effort of the mean value first order reliability method is minimal, RBDO by using reliability mapping functions should be highly efficient. Engineering examples are given to demonstrate the efficiency and accuracy of the proposed method. Numerical results indicated that the proposed method has the similar accuracy as Monte Carlo simulation, and it can obviously reduce the computational effort.

한국적 신뢰성 인증체계 개념 (Korean Novel Concept for the Reliability Certification System)

  • 김형의
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제6권1호
    • /
    • pp.63-91
    • /
    • 2006
  • According to the rapid development of science technologies, a life and development cycle of products are getting shorter and structures and functions become more complex so that the reliability requirement of customers is getting greater for components in the products. However, most domestic mechanical components are manufactured by small and medium-sized companies, who are manufacturing in poor economic and technical condition. Because of this, assessment technologies and equipment to predict and guarantee the reliability are very weak. For this reason, it is the fact that many customers neglect the domestic mechanical components which fail to win the reliability. Korean government has been trying to eliminate the problem by establishing 18 reliability assessment centers in 2000 and performing R-Mark certification promotion and constructions of the foundation for reliability assessment to rebuild the reliability on the domestic components and materials. Korea Institute of Machinery and Materials has been designated as a supervising organization for reliability assessment in the machinery filed for 5 years. In this paper, we would like to introduce effective and systematized 12 steps of reliability substantiation test on mechanical components with know-how we achieved during the period.

  • PDF

Reliability assessment of semi-active control of structures with MR damper

  • Hadidi, Ali;Azar, Bahman Farahmand;Shirgir, Sina
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.131-141
    • /
    • 2019
  • Structural control systems have uncertainties in their structural parameters and control devices which by using reliability analysis, uncertainty can be modeled. In this paper, reliability of controlled structures equipped with semi-active Magneto-Rheological (MR) dampers is investigated. For this purpose, at first, the effect of the structural parameters and damper parameters on the reliability of the seismic responses are evaluated. Then, the reliability of MR damper force is considered for expected levels of performance. For sensitivity analysis of the parameters exist in Bouc- Wen model for predicting the damper force, the importance vector is utilized. The improved first-order reliability method (FORM), is used to reliability analysis. As a case study, an 11-story shear building equipped with 3 MR dampers is selected and numerically obtained experimental data of a 1000 kN MR damper is assumed to study the reliability of the MR damper performance for expected levels. The results show that the standard deviation of random variables affects structural reliability as an uncertainty factor. Thus, the effect of uncertainty existed in the structural model parameters on the reliability of the structure is more than the uncertainty in the damper parameters. Also, the reliability analysis of the MR damper performance show that to achieve the highest levels of nominal capacity of the damper, the probability of failure is greatly increased. Furthermore, by using sensitivity analysis, the Bouc-Wen model parameters which have great importance in predicting damper force can be identified.

소프트웨어 신뢰성 모델링 기반 소프트웨어 품질 측정 (The software quality measurement based on software reliability model)

  • 정혜정
    • 한국융합학회논문지
    • /
    • 제10권4호
    • /
    • pp.45-50
    • /
    • 2019
  • 본 연구는 소프트웨어 신뢰성을 측정하기 위해 소프트웨어 신뢰도 측정 모형에 따라 소프트웨어 신뢰도를 측정하는 방법을 제시하려 한다. 본 연구에서 제시한 모형의 형태는 비동질적 포아송 과장의 분포를 이용하였으며, 제시된 모형의 소프트웨어 신뢰도를 측정하는 방안을 제시하였다. 제시된 모형에 따라서 적합한 소프트웨어 신뢰도 성장 모형을 선택하는 방법으로는 소프트웨어 고장 데이터에 따라서 신뢰도 함수의 추정 값에 따른 평균제곱오차를 계산하여 적합한 소프트웨어 신뢰도 함수를 제안하는 방법을 연구하였다. 본 연구에서는 소프트웨어 품질을 측정하기 위한 신뢰도 함수를 제안하기 위하여 모델을 제시하고 고장데이터를 적용하여 추정 값의 오차를 최소화하는 관점에서 소프트웨어 신뢰도 함수를 선택할 수 있는 방안을 제시한 연구로 판단된다.

DEVS 형식론 기반의 Dynamic Reliability Block Diagram과 GPU 가속 기술을 이용한 신뢰도 분석 방법 (GPU-accelerated Reliability Analysis Method using Dynamic Reliability Block Diagram based on DEVS Formalism)

  • 하솔;구남국;노명일
    • 한국시뮬레이션학회논문지
    • /
    • 제22권4호
    • /
    • pp.109-118
    • /
    • 2013
  • 전통적으로 신뢰도 분석에 사용되는 Fault Tree Analysis의 경우 관련 분야의 전문가가 필요하고 작성자의 판단에 따라 신뢰도 분석 결과가 달라진다. 반면, Reliability Block Diagram의 경우 시스템 구성도나 Process Flow Diagram (PFD), Piping and Instrument Diagram (P&ID)을 기반으로 하기에 작성에 필요한 비용과 시간이 절감되는 장점이 있다. 본 논문에서는 Dynamic Reliability Block Diagram과 이산 사건 시뮬레이션에 널리 사용되는 DEVS 형식론을 이용하는 신뢰도 분석 방법을 제안한다. 또한 시스템 모델링 방법론 중 하나인 System Entity Structure/Model Base의 개념을 도입함으로써 다양한 설계 대안에 대한 신뢰도 분석 모델을 자동으로 생성할 수 있도록 하였다. 그리고 Reliability Block Diagram을 이용한 신뢰도 분석 시 오래 소요되는 계산 시간을 단축시키기 위해 GPU 가속 기술을 신뢰도 분석 시뮬레이션에 접목하였다.