• 제목/요약/키워드: Reliability-based design optimization (RBDO)

검색결과 58건 처리시간 0.027초

근사신뢰도기법을 이용한 효율적인 공력 형상 설계에 관한 연구 (Study of the Efficient Aerodynamic Shape Design Optimization Using the Approximate Reliability Method)

  • 김수환;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.187-191
    • /
    • 2004
  • The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods. To overcome the computational inefficiency of RBDO, single loop methods have been proposed. These need less function calls than that of RBDO but much more than that of DO. In this study, the approximate reliability method is proposed that the computational requirement is nearly the same as DO and the reliability accuracy is good compared with that of RBDO. Using this method, the 3-D viscous aerodynamic shape design optimization with uncertainty is performed very efficiently.

  • PDF

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

Reliability-Based Design Optimization of Slider Air Bearings

  • Yoon, Sang-Joon;Choi, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1722-1729
    • /
    • 2004
  • This paper presents a design methodology for determining configurations of slider air bearings considering the randomness of the air-bearing surface (ABS) geometry by using the iSIGHT. A reliability-based design optimization (RBDO) problem is formulated to minimize the variations in the mean values of the flying heights from a target value while satisfying the desired probabilistic constraints keeping the pitch and roll angles within a suitable range. The reliability analysis is employed to estimate how the fabrication tolerances of individual slider parameters affect the final flying attitude tolerances. The proposed approach first solves the deterministic optimization problem. Then, beginning with this solution, the RBDO is continued with the reliability constraints affected by the random variables. Reliability constraints overriding the constraints of the deterministic optimization attempt to drive the design to a reliability solution with minimum increase in the objective. The simulation results of the RBDO are listed in comparison with the values of the initial design and the results of the deterministic optimization, respectively. To show the effectiveness of the proposed approach, the reliability analyses are simply carried out by using the mean value first-order second-moment (MVFO) method. The Monte Carlo simulation of the RBDO's results is also performed to estimate the efficiency of the proposed approach. Those results are demonstrated to satisfy all the desired probabilistic constraints, where the target reliability level for constraints is defined as 0.8.

RELIABILITY-BASED DESIGN OPTIMIZATION OF AN AUTOMOTIVE SUSPENSION SYSTEM FOR ENHANCING KINEMATIC AND COMPLIANCE CHARACTERISTICS

  • CHOI B.-L.;CHOI J.-H.;CHOI D.-H.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.235-242
    • /
    • 2005
  • This study introduces the Reliability-Based Design Optimization (RBDO) to enhance the kinematic and compliance (K & C) characteristics of automotive suspension system. In previous studies, the deterministic optimization has been performed to enhance the K & C characteristics. Unfortunately, uncertainties in the real world have not been considered in the deterministic optimization. In the design of suspension system, design variables with the uncertainties, such as the bushing stiffness, have a great influence on the variation of the suspension performances. There is a need to quantify these uncertainties and to apply the RBDO to obtain the design, satisfying the target reliability level. In this research, design variables including uncertainties are dealt as random variables and reliability of the suspension performances, which are related the K & C characteristics, are quantified and the RBDO is performed. The RBD-optimum is compared with the deterministic optimum to verify the enhancement in reliability. Thus, the reliability of the suspension performances is estimated and the RBD-optimum, satisfying the target reliability level, is determined.

Reliability-Based Design Optimization using Semi-Numerical Strategies for Structural Engineering Applications

  • Kharmanda, G.;Sharabatey, S.;Ibrahim, H.;Makhloufi, A.;Elhami, A.
    • International Journal of CAD/CAM
    • /
    • 제9권1호
    • /
    • pp.1-16
    • /
    • 2010
  • When Deterministic Design Optimization (DDO) methods are used, deterministic optimum designs are frequently pushed to the design constraint boundary, leaving little or no room for tolerances (or uncertainties) in design, manufacture, and operating processes. In the Reliability-Based Design Optimization (RBDO) model for robust system design, the mean values of uncertain system variables are usually used as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, a RBDO solution that reduces the structural weight in uncritical regions does not only provide an improved design but also a higher level of confidence in the design. In this work, we seek to improve the quality of RBDO processes using efficient optimization techniques with object of improving the resulting objective function and satisfying the required constraints. Our recent RBDO developments show its efficiency and applicability in this context. So we present some recent structural engineering applications demonstrate the efficiency of these developed RBDO methods.

System RBDO of truss structures considering interval distribution parameters

  • Zaeimi, Mohammad;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.81-96
    • /
    • 2019
  • In this paper, a hybrid uncertain model is applied to system reliability based design optimization (RBDO) of trusses. All random variables are described by random distributions but some key distribution parameters of them which lack information are defined by variation intervals. For system RBDO of trusses, the first order reliability method, as well as monotonicity analysis and the branch and bound method, are utilized to determine the system failure probability; and Improved (${\mu}+{\lambda}$) constrained differential evolution (ICDE) is employed for the optimization process. System reliability assessment of several numerical examples and system RBDO of different truss structures are proposed to verify our results. Moreover, the effect of different classes of interval distribution parameters on the optimum weight of the structure and the reliability index are also investigated. The results indicate that the weight of the structure is increased by increasing the uncertainty level. Moreover, it is shown that for a certain random variable, the optimum weight is more increased by the translation interval parameters than the rotation ones.

신뢰성기반 최적설계에서 수치적 안정성과 효율성의 개선을 위해 수정된 Single Loop Single Vector 방법 (Modified Single Loop Single Vector Method for Stability and Efficiency Improvement in Reliability-Based Design Optimization)

  • 김봉재;이재옥;양영순
    • 한국전산구조공학회논문집
    • /
    • 제18권1호
    • /
    • pp.51-59
    • /
    • 2005
  • SLSV(single loop single vector)방법은 신뢰성기반 최적설계(reliability-based design optimization, RBDO)에서 중첩된 반복과정을 제거함으로써 최적설계의 과도한 계산비용 문제에 대한 해결책을 제시하고 있지만, 종종 수렴하지 못하거나 잘못된 해가 얻어지는 등의 불안정성, 부정확성 문제를 가지고 있어 그 활용이 제한적이다. 본 논문에서는 수정된 HMV(hybrid mean value)방법, Inactive Design, Active MPP(most probable point) Design의 적용을 통해 SLSV방법에 있어서 안정성과 효율성을 효과적으로 개선시킬 수 있는 수정된 SLSV방법을 제안하였고 또한 다양한 예제를 통해 수정된 SLSV방법의 유용성을 검증하였다.

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.

Reliability-based design optimization using reliability mapping functions

  • Zhao, Weitao;Shi, Xueyan;Tang, Kai
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.125-138
    • /
    • 2017
  • Reliability-based design optimization (RBDO) is a powerful tool for design optimization when considering probabilistic characteristics of design variables. However, it is often computationally intensive because of the coupling of reliability analysis and cost minimization. In this study, the concept of reliability mapping function is defined based on the relationship between the reliability index obtained by using the mean value first order reliability method and the failure probability obtained by using an improved response surface method. Double-loop involved in the classical RBDO can be converted into single-loop by using the reliability mapping function. Since the computational effort of the mean value first order reliability method is minimal, RBDO by using reliability mapping functions should be highly efficient. Engineering examples are given to demonstrate the efficiency and accuracy of the proposed method. Numerical results indicated that the proposed method has the similar accuracy as Monte Carlo simulation, and it can obviously reduce the computational effort.

신뢰성을 고려한 유연 날개의 다점 최적 설계에 관한 연구 (A STUDY ABOUT MULTI-POINT RELIABILITY BASED DESIGN OPTIMIZATION OF FLEXIBLE WING)

  • 김수환;이재훈;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.99-104
    • /
    • 2005
  • For the efficient reliability analysis, Bi-direction two-point approximation(BTPA) method is developed which solves shortcomings of conventional two-point approximation(TPA) methods that generate an approximate surface with low accuracy or sometimes do an unstable approximate surface. The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods. To overcome the computational inefficiency of RBDO, the approximate reliability analysis approaches on the TPA surface are proposed. Using these FORM and SORM analysis strategies, multi-point aerodynamic-structure interacted shape design optimizations with uncertainty are performed very efficiently.

  • PDF