• Title/Summary/Keyword: Reliability of water supply

Search Result 164, Processing Time 0.025 seconds

Drought Index Development for Agricultural Drought Monitoring in a Catchment (집수역 내 농업가뭄 감시를 위한 가뭄지수 개발)

  • Kim, Dae-Jun;Moon, Kyung-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.359-367
    • /
    • 2014
  • Drought index can be used to implement an early warning system for drought and to operate a drought monitoring service. In this study, an approach was examined to determine agricultural drought index (ADI) at high spatial resolution, e.g., 270 m. The value of ADI was calculated based on soil water balance between supply and demand of water. Water supply is calculated by the cumulative effective precipitation with the application of the weight to the precipitation from two months ago. Water demand is derived from the actual evapotranspiration, which was calculated applying a crop coefficient to the reference evapotranspiration. The amount of surface runoff on a given soil type was also used to calculate soil residual moisture. Presence of drought was determined based on the probability distribution in the given area. In order to assess the reliability of this index, the amount of residual moisture, which represents severity of drought, was compared with measurements of soil moisture at three experimental between July 2012 and December 2013. As a result, the ADI had greater correlation with measured soil moisture compared with the standardized precipitation index, which suggested that the ADI would be useful for drought warning services.

Electrical Output and Reliability of Photovoltaic Module Using Ethylene Tetrafluoroethylene Film (ETFE 필름을 적용한 태양광 모듈의 전기적 출력 및 신뢰성에 관한 연구)

  • Shin, Woogyun;Lim, Jongrok;Ko, Sukwhan;Kang, Gihwan;Ju, Youngchul;Hwang, Heymi
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • As the supply of photovoltaic (PV) increases worldwide, the cumulative installations in 2018 were 7.9 and 560 GW in Korea and the world, respectively. Typically, when the ground on commercial PV modules is installed, the area is limited; hence, new designs of PV modules are required to install additional PVs. Among the new design of PV modules, lightweight PV modules can be utilized in PV systems, such as buildings, farmlands, and floating PV. Concerning the investigation of lightweight PV modules, several studies on materials for replacing low-iron tempered glass, which comprises approximately 65% of the PV module weight, have been conducted. However, materials that are used as substitutes for glass should possess similar lightweight properties and reliability as glass. In this study, experimental tests were performed to evaluate the applicability of ethylene tetrafluoroethylene (ETFE) film with excellent resistance to water and aging as a front material of PV modules. The transmittance and ultraviolet properties of the ETFE film were determined and compared with those of glass. A 1-cell module and laboratory-scale 24-cell module were manufactured using the ETFE film and glass, and the electrical output was measured and analyzed. Furthermore, damp heat and thermal cycle tests were conducted to evaluate the reliability of the ETFE film module. Based on the experimental results, the electrical output and reliability of the ETFE film module were similar to those of the glass module, and the ETFE film could be used as the front material of PV modules.

Re-evaluation of Soyang Dam inflow based on modifying a simple water balance method considering evaporation (증발량을 고려한 단순 물수지 방정식 개선을 통한 소양강댐 유입량의 재평가)

  • Yoo, Jiyoung;Lee, Dong Jin;Yoo, Do-Guen;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.461-469
    • /
    • 2022
  • It is very important to ensure the reliability of dam inflow data, which is critical in planning and managing the supply and demand of water resources in a basin. However, the simple water balance model sometimes results in negative inflows and does not consider the actual inflow characteristics. In this study, to address these issues, the existing water balance formula was modified by considering evaporation which is available for calculation among other outflows. The modified water balance formula was applied to the Soyang Dam. The results showed that the rate of negative inflows decreased in the re-evaluated dam inflow data and it was possible to secure consistency for the total inflow volume. In addition, investigating the water availability in the Soyang Dam watershed based on the water balance concept considering evaporation, it was found that direct water use in the human aspect was about 60%, and the indirect water use in the natural aspect was about 40%. In drought years, it was also confirmed that the proportion of indirect use of water resources increased.

Deriving a Reservoir Operating Rule ENSO Information (ENSO 정보를 이용한 저수지 운영울의 산출)

  • Kim, Yeong-O
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.593-601
    • /
    • 2000
  • Analyzing monthly inflows of the Chung-Ju Dam associated with EI Nino Southern Oscillation (ENSO), Kim and Lee(2000) reported that the fall and winter inflows in EI Nino years tended to be low while those in La Nina years tended to be high. This study proposes a methodology of employing such a teleconnection between ENSO and inflow in reservoir operations. The ENSO information is used as a hydrologic state variable in stochastic dynamic programming (SDP) to derive a monthly optimal rule for operating the Chung- Ju Dam. An alternative operating rule is also derived with the SDP with no hydrologic state variable. Both of the SDP operating rules are simulated and compared to examine the value of using the ENSO information in operations of the Chung-Ju Dam. The simulation results show that the operating rule using the ENSO information increases energy generation and reliability of water supply as well as reduces spill. spill.

  • PDF

Evaluation of Water Supply Reliability Method for Agricultural Reservoirs (농업용 저수지 이수안전도 기준의 적정성 평가)

  • Yang, Mi-Hye;Nam, Won-Ho;Mun, Young-Sik;Shin, Ji-Hyeon;Yang, Hee-Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.512-512
    • /
    • 2022
  • 국내 수자원 시스템은 이수 관련 기준과 이를 평가할 수 있는 지표 및 방법, 지침이 미흡한 실정으로 관련 시설물의 안정성과 형평성에 대한 문제가 제기되어 왔다. 농업용 저수지의 경우 한발 시 관개용수를 공급할 수 있는 내한능력, 기존 설계기준에 의한 물수지법에 따른 저수지의 설계한발빈도를 대체 사용하여 이수안전도를 산정하고 있으며, 설계한발빈도인 10년 한발빈도는 10년에 1회 정도의 갈수를 기준으로 한다. 농업용 저수지의 축조년도는 1940-1970년대로 약 86%가 축조된 지 50년 이상 경과하였고, 대부분 설계 한발빈도가 10년 이하로 축조되었으나 최근 발생하고 있는 기후변화, 용수관리 환경 변화, 수요량의 변화, 설계한발빈도 변화 등으로 현시점의 이수안전도 파악이 필요한 실정이다. 본 연구에서는 국가물관리기본계획에서 준용하고 있는 신뢰도 관련 이수안전도 기준인 이수안전율과 공급신뢰율을 활용하여 농업용 저수지의 이수안전도를 산정하고 기존 농업용 저수지의 이수안전도 기준인 10년 한발빈도와 비교함으로써, 농업용 저수지 이수안전도 산정기준의 적정성을 평가하고자 한다. 신뢰도 기준은 장기간 계획기간 동안 저수지의 용수부족이 얼마나 발생하는가에 대한 평가 방법으로 이수안전율은 최대 부족량과 수요량으로 산정가능한 양적기준 신뢰도이며, 공급신뢰율은 물공급부족기간으로 산정가능한 시간기준 신뢰도이다. 신뢰도 기준에 의한 방법은 저수지 모의 운영을 통한 물수지 분석을 실시하여 산정이 가능하며, 물수지 분석을 위해 한국농어촌공사에서 개발한 수리수문설계시스템 (K-HAS, Hydraulics & Hydrology Analysis System)을 사용하였다. 본 연구의 결과는 농업용 저수지의 이수관리 계획 수립 및 내한능력 평가 등 국가수자원정책의 지표로 활용할 수 있을 것으로 기대된다.

  • PDF

Water Supply and Reliability Increment by Dams Connection (댐간 연결을 통한 공급량 증대 및 신뢰도 향상)

  • Lee, Gwang-Man;Lee, Seung-Yoon;Lee, Eul-Rae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.317-321
    • /
    • 2010
  • 대부분의 유역에는 다수의 댐이 건설되어 운영되고 있는 것이 일반적이며, 이들 댐 군의 효과를 극대화하기 위하여 연계최적운영 기법의 적용이 일반화 되고 있다. 2000년 수립된 국가장기수 자원계획에서도 이미 4대강 수계의 댐 군의 연계운영 효과로 2011년까지 6억 $m^3$를 반영하고 있다. 또한 프론티어 연구개발사업을 통해 순수한 시스템적인 개선으로 30억 $m^3$의 용수를 추가적으로 확보하는 방안이 오래전부터 진행되어 오고 있다. 이와 같은 방법론의 핵심은 수문기상의 예측정도를 높이고 장단기 강우-유출을 사전 혹은 실시간으로 예측하여 수자원시설물의 기능을 최대화시키는 전략으로 현재와 같이 댐과 같은 수리구조물을 신규로 건설하는데 어려움이 많은 경우 유용한 대안이 될 수 있다. 그러나 수리구조물의 운영에 필요한 많은 변수 중에서 가장 예측이 어려우며 또한 효과를 평가할 수 있는 가장 핵심적인 요소인 수문사상에 대한 정보의 신뢰도에는 한계가 있다. 다시 말하면 현재와 같은 상황에서 수자원시설물의 시스템적인 개선을 통한 편익의 신뢰도가 구조물적인 효과의 신뢰도를 보장하기 어렵다는 것이다. 결국 주어진 여건에서 수자원이용의 효과를 극대화시키기 위해서는 구조적 대안과 시스템적인 기법을 같이 적용할 수밖에 없으며 상호 보완적으로 활용하는 것이 가장 합리적일 것이다. 이와 같은 측면에서 구조적인 댐간 연결은 일정범위까지는 확실한 효과를 담보할 수 있으며 이 또한 시스템적으로도 유용할 것이다. 본 연구에서는 이와 같은 개념을 안동댐과 임하댐이 도수터널로 연결될 경우로 가정하여 예상되는 효과에 대하여 평가하였다. 평가방법은 일간연계모의모형과 일간도수연결모의모형을 개발하여 적용하였으며 무효방류량의 감소정도와 용수공급 증가량과 공급의 신뢰도, 부족량의 크기 등을 비교 평가하였다.

  • PDF

Influence of Frequency on Electromagnetic Field of Super High-Speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Wang, Wei;Tang, Bingxia;Zhao, Xifang;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.980-988
    • /
    • 2019
  • When compared with traditional power frequency generators, the frequency of a super high-speed permanent magnet generator (SHSPMG) is a lot higher. In order to study the influence of frequency on the electromagnetic field of SHSPMGs, a 60000rpm, 117kW SHSPMG was taken as a research object. The two-dimensional finite element model of the generator was established, and the two-dimensional transient field of the generator was simulated. In addition, a test platform of the generator was set up and tested. The reliability of the simulation was verified by comparing the experiment data with that of the simulation. Then the generator electromagnetic field under different frequencies was studied, and the influence mechanism of frequency on the generator electromagnetic field was revealed. The generator loss, voltage regulation rate, torque and torque ripple were analyzed under the rated active power load and different frequencies. The influences of frequency on the eddy current density, loss, voltage regulation rate and torque ripple of the generator were obtained. These conclusions can provide some reference for the design and optimization of SHSPMGs.

Groundwater Movement Analysis Using the WINFLOW Model (WINFLOW 모델을 이용한 지하수 유동해석)

  • 최윤영;안승섭;김재광
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.103-115
    • /
    • 2003
  • This study examines groundwater movement system analysis and movement forecast algorithm using finite element method. The target is Cheongha-myeon area, Bukgu, Pohang-city which has many difficulties in water supply during drought period. From the comparison of the differences between obtained values by WINFlOW model and observed values, it is thought that groundwater head distribution under steady flow is reflected well at the level of reliability Groundwater movement of study area shows stable pattern from western watershed to eastern coastal area while flow path is dense and steep in the center of the coastal area. The results of particle tracing for each well show a comparatively straight line from the western boundary side to the observation position at the upper area of the well, and are analyzed as it diffuses according to getting closer to the coast at the lower area of the well. The result of effect circle examination attendant on pumping amount in study area shows variation tendency that groundwater head decreases at the side and the lower area more than at the upper area of the well when groundwater flows from west to east(coast). As mentioned above, satisfactory results of groundwater movement analysis using WINFlOW model, two dimensional groundwater movement analysis model, are obtained through the great decrease of physical uncertainty of groundwater movement system.

Study on the Evaluation of the Tension and Contact Resistance of a 3 Φ 3 W Plug-In MCCB (3상 3선식 Plug-In MCCB의 인장력 및 접촉저항 평가에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.43-47
    • /
    • 2013
  • The purpose of this paper is to evaluate the performance of a Plug-In MCCB developed for rapid power supply restoration when the MCCB is installed in a power system and to verify its reliability. Since the developed 3 ${\Phi}$ 3 W Plug-In MCCB can be installed on and removed from a bus bar by one touch using a plug housed at the rear, it can be replaced in a short period of time. Therefore, it can quickly respond to the normalization of a power system. When the Plug-In MCCBB is installed on a bus bar, the resistance between each phase and plug was measured to be 0.46 $m{\Omega}$ in average. When the Plug-In MCCB is installed, the tension in the vertical direction was measured to be 112.78 N in average, which is greater than the tension of 50 N specified in the related regulation. The withstanding voltage tests performed 5 times repeatedly by applying 6 kV to the developed Plug-In MCCB for 60 seconds shows good withstanding voltage characteristics. In addition, both the general waterproof test using a water injection method and the insulation resistance analysis using a Mega meter showed good waterproof and insulation characteristics.

Waterhammer for the Intake Pumping Station with the Pump Control Valve (펌프제어밸브를 사용한 취수펌프장에서의 수격현상)

  • Kim, Kyung-Yup;Oh, Sang-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.16-21
    • /
    • 2001
  • The field tests on the waterhammer were carried out for PalDang intake pumping station of the metropolitan water supply 5th stage project. The pumping station was equipped with the pump control valve as the main surge suppression device and the surge relief valve as auxiliary. However, the pump control valve had not been early controlled in the planned closing mode, and the slamming occurred to the valve which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. It was desirable that the surge relief valve was installed in the pumping station or near the pump exit for the delay of response. After reforming the oil dashpot of the pump control valve, the sliming disappeared and the measured pressure was in fairly good agreement with the results of simulation. In case of three pumps for ${\phi}2,600$ pipeline being simultaneously tripped, the pressure head in the pumping station increased to 95.6 m, and the upsurge caused by the emergency stop of four pumps for ${\phi}2,800$ pipeline was 89.6m. We concluded that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF