• Title/Summary/Keyword: Reliability analysis technique

Search Result 803, Processing Time 0.025 seconds

Importance Sampling Technique for System Reliability Analysis of Bridge Structures (교량구조의 체계 신뢰성 해석을 위한 중요도 표본추출 기법)

  • 조효남;김인섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.34-42
    • /
    • 1991
  • This study is directed for the development of an efficient system-level Importance Sampling Technique for system reliability analysis of bridge structures Many methods have been proposed for structural reliability assessment purposes, such as the First-order Second-Moment Method, the Advanced Second-Moment Method, Computer Simulation, etc. The Importance Sampling Technique can be employed to obtain accurate estimates of the required probability with reasonable computation effort. Based on the observation and the results of application, it nay be concluded that Importance Sampling Method is a very effective tool for the system reliability analysis.

  • PDF

Alternative Analysis of Reliability Design using Redundancy Technique (리던던시 기법을 활용한 신뢰성 설계 대안 분석)

  • Seo, Yang Woo;Lim, Jae Hoon;Yoon, Jung Hwan;Nam, Hyun Woo;Woo, Yeon Jeong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • In this paper we proposed the alternative analysis of reliability design using redundancy technique. First, we presented the process for establishing the reliability design alternative analysis process considering the active redundancy and the standby redundancy. and then, the case analysis of A driving equipment was performed in accordance with the reliability design alternative analysis process presented. In case the series reliability design result is not met with the reliability target value. so, the target item for redundancy design of A driving equipment were selected as items with a severity of two or higher. The redundancy design applied with active and standby redundancy techniques were analyzed using BlockSim software. As a result, it was analyzed that reliability design to active redundancy with one of two elements required for A driving equipment is the most efficient compared to the target value of reliability. The results of this study can be usefully used before the reliability design is performed.

Importance Sampling Technique for System Reliability Analysis of Bridge Structures (교량구조의 체계 신뢰성 해석을 위한 중요도 표본추출 기법)

  • 조효남;김인섭
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.119-129
    • /
    • 1991
  • This study is directed for the development of an efficient Importance Sampling Technique for system reliability analysis of bridge structures. Many methods have been proposed for structural reliability assessment such as the First-order Second-Moment Method, the Advanced Second-Moment Method, Monte Carlo Simulation, etc. The Importance Sampling Technique can be employed to obtain accurate estimates for the system reliability with reasonable computation effort. Based on the results of example analysis, it may be concluded that Importance Sampling Technique is a very effective tool for the system reliability analysis.

  • PDF

Parallel Reservoir Analysis of Drought Period by Water Supply Allocation Method (공급량 배분기법을 이용한 갈수기 병렬저수지 해석)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.261-269
    • /
    • 2006
  • In this study, an optimization technique was developed from the application of allocation rule. The results obtained from the water supply analysis and reliability indices analysis of Andong dam and Imha dam which are consist of parallel reservoir system are summarized as the followings; Allocation rule(C) is effective technique at the parallel reservoir system because results of the water supply analysis, storage analysis and reliability indices analysis is calculated reasonable results. Also, reliability indices analysis results are not sufficient occurrence based reliability or quantity based reliability. Thus reliability indices analysis are need as occurrence based reliability, quantity based reliability vulnerability, resilience, average water supply deficits and average storage. And water supply condition is better varying water supply condition than constant water supply condition.

A Reliability Study on the Weak Point Analysis of the Development Parts (개발부품의 설계취약점 분석을 위한 신뢰성 연구)

  • Kim, Sung Ok;Park, Sang Wook;Lee, Sang Hun
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 2013
  • The requirements of reliability verification for new products and technology are increasing more and more in accordance with the trend change of strength for safety technology, functional skills and emotional quality. In order to conduct the purpose of robust design from the stage of product development recently, the application of reliability technology has gradually increased such as detecting the failure mode throughout the HALT technique, accelerated tests and so on. The main results are as follows; i) through the pre-test and analysis, detected the basic performance and predictable failure mode, ii) HALT technique and process has been developed that can be applied test methods for the next new products.

System Reliability Analysis for Nonnormal Distributions and Optimization Using Experimental Design Technique (실험계획법을 이용한 비정규 분포에 대한 신뢰도 계산 방법과 최적 설계에의 적용)

  • Seo, Hyun-Seok;Chang, Jin-Ho;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.327-332
    • /
    • 2001
  • An experimental design technique is developed for estimating the moments of system response functions. It is easy to implement and provides accurate results compared with other traditional methods. It is based on the work of Taguchi, later improved by D'Errico and Zaino. The existing experimental techniques, however, is applicable only for normally distributed cases. In this article the three-level Taguchi method is extended to obtain optimum choice for levels and weights to handle nonnormal distributions. A systematic procedure for reliability analysis is then proposed by using the Pearson system and the narrow system reliability bounds. Illustrative examples including a tolerance optimization problem are shown very accurate comparing with those by Monte-Carlo simulations and the first-order reliability method.

  • PDF

Reliability Analysis for a System under Imperfect Repair Using Fourier Transform Technique (Fourier 변환 기법을 이용한 불완전 수리를 실시하는 시스템의 신뢰도 분석)

  • Kim, Ho Gyun;Son, In Soo
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.110-117
    • /
    • 2016
  • Purpose: Biswas and Sarkar [11] found the availability of a system maintained through several imperfect repairs before a replacement is allowed. However they missed a part of coefficients in the integration. This paper corrects the erratum of Biswas and Sarkar [11] and performs the reliability analysis incorporating the optimal number of imperfect repairs. Methods: To find the singularities and residues of the suitable complex-valued function for the availability, the computer package Matlab is used. Also the performance measures are calculated by defining and assigning costs. Results: The accurate availability functions with respect to the numbers of imperfect repairs and the optimal number of imperfect repairs before a replacement are obtained. Conclusion: The reliability for a system under imperfect repair before a replacement is analyzed using Fourier transform technique.

Reliability Analysis of Interleaved Memory with a Scrubbing Technique (인터리빙 구조를 갖는 메모리의 스크러빙 기법 적용에 따른 신뢰도 해석)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.443-448
    • /
    • 2014
  • Soft errors in memory devices that caused by radiation are the main threat from a reliability point of view. This threat can be commonly overcome with the combination of SEC (Single-Error Correction) codes and scrubbing technique. The interleaving architecture can give memory devices the ability of tolerating these soft errors, especially against multiple-bit soft errors. And the interleaving distance plays a key role in building the tolerance against multiple-bit soft errors. This paper proposes a reliability model of an interleaved memory device which suffers from multiple-bit soft errors and are protected by a combination of SEC code and scrubbing. The proposed model shows how the interleaving distance works to improve the reliability and can be used to make a decision in determining optimal scrubbing technique to meet the demands in reliability.

Reliability-Based Optimal Design of Pillar Sections Considering Fundamental Vibration Modes of Vehicle Body Structure (차체 기본 진동 모드를 고려한 필러 단면의 신뢰성 최적설계)

  • Lee Sang Beom;Yim Hong Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.107-113
    • /
    • 2004
  • This paper presents the pillar section optimization technique considering the reliability of the vehicle body structure consisted of complicated thin-walled panels. The response surface method is utilized to obtain the response surface models that describe the approximate performance functions representing the system characteristics on the section properties of the pillar and on the mass and the natural frequencies of the vehicle B.I.W. The reliability-based design optimization on the pillar sections Is performed and compared with the conventional deterministic optimization. The FORM is applied for the reliability analysis of the vehicle body structure. The developed optimization system is applied to the pillar section design considering the fundamental natural frequencies of passenger car body structure. By applying the proposed RBDO technique, it can be possible to optimize the pillar sections considering the reliability that engineers require.

New method for dependence assessment in human reliability analysis based on linguistic hesitant fuzzy information

  • Zhang, Ling;Zhu, Yu-Jie;Hou, Lin-Xiu;Liu, Hu-Chen
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3675-3684
    • /
    • 2021
  • Human reliability analysis (HRA) is a proactive approach to model and evaluate human systematic errors, and has been extensively applied in various complicated systems. Dependence assessment among human errors plays a key role in the HRA, which relies heavily on the knowledge and experience of experts in real-world cases. Moreover, there are ofthen different types of uncertainty when experts use linguistic labels to evaluate the dependencies between human failure events. In this context, this paper aims to develop a new method based on linguistic hesitant fuzzy sets and the technique for human error rate prediction (THERP) technique to manage the dependence in HRA. This method handles the linguistic assessments given by experts according to the linguistic hesitant fuzzy sets, determines the weights of influential factors by an extended best-worst method, and confirms the degree of dependence between successive actions based on the THERP method. Finally, the effectiveness and practicality of the presented linguistic hesitant fuzzy THERP method are demonstrated through an empirical healthcare dependence analysis.