• 제목/요약/키워드: Reliability Index Approach

검색결과 138건 처리시간 0.027초

R.C 박스거더교의 체계신뢰성해석 및 안전도평가 (Assessment of System Reliability and Capacity-Rating of Concrete Box-Girder High-Girder Highway Bridges)

  • 조효남;이승재;임종권
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.195-200
    • /
    • 1993
  • This paper develops practical and realistic reliability models and methods for the evalusion of system reliability and system reliability-based rating of R.C box-girder bridge superstructures. The precise prediction of reserved carrying capacity of bridge as a system is extremely difficult expecially when the bridges are highly redundant and significantly deteriorated or damaged. This paper proposes a new approach for the evaluation of reserved system carrying capacity of bridges in terms of equivalent system-strength, which may be defined as a bridge system-strength corresponding to the system reliability of the bridge. This can be derived from an inverse process based on the concept of FOSM form of system reliability index. The strength limit state models for R.C box-girder bridges suggested in the paper are based on the basic bending and shear strength. and the system reliability problem of box-girder superstructure is formulated as parallel-series models obtained from the FMA(Failure Mode Approach) based on major failure mechanism or critical failure states of each girder. AFOSM and IST(Importance Sampling Technique) simulation algorithm is used for the reliability analysis of the proposed models.

  • PDF

신뢰성 기반 위상최적화에 대한 비교 연구 (Comparative Study on Reliability-Based Topology Optimization)

  • 조강희;황승민;박재용;한석영
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.412-418
    • /
    • 2011
  • Reliability-based Topology optimization(RBTO) is to get an optimal design satisfying uncertainties of design variables. Although RBTO based on homogenization and density distribution method has been done, RBTO based on BESO has not been reported yet. This study presents a reliability-based topology optimization(RBTO) using bi-directional evolutionary structural optimization(BESO). Topology optimization is formulated as volume minimization problem with probabilistic displacement constraint. Young's modulus, external load and thickness are considered as uncertain variables. In order to compute reliability index, four methods, i.e., RIA, PMA, SLSV and ADL(adaptive-loop), are used. Reliability-based topology optimization design process is conducted to obtain optimal topology satisfying allowable displacement and target reliability index with the above four methods, and then each result is compared with respect to numerical stability and computing time. The results of this study show that the RBTO based on BESO using the four methods can effectively be applied for topology optimization. And it was confirmed that DLSV and ADL had better numerical efficiency than SLSV. ADL and SLSV had better time cost than DLSV. Consequently, ADL method showed the best time efficiency and good numerical stability.

변위 제한 조건하에서의 신뢰성 기반 형상 최적화 (Reliability-Based Shape Optimization Under the Displacement Constraints)

  • 오영규;박재용;임민규;박재용;한석영
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.589-595
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.

체계신뢰성에 기초한 교량의 시스템여용성 및 저항강도 평가 (SYSTEM RELIABILITY-BASED EVALUATION OF BRIDGE SYSTEM REDUNDANCY AND STRENGTH)

  • 조효남;이승재;임종권
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.240-247
    • /
    • 1993
  • The precise prediction of reserved carrying capacity of bridge as a system is extremely difficult especially when the bridges are highly redundant and significantly deteriorated or damaged. This paper is intended to propose a new approach for the evaluation of reserved system carrying capacity of bridges in terms of equivalent system-strength, which may be defined as a bridge system-strength corresponding to the system reliability of the bridge. This can be derived from an inverse process based on the concept of FOSM form of system reliability index. It may be emphasized that this approach is very useful for the evaluation of the deterministic system redundancy and reserve strength which are measured in terms of either probabilistic system redundancy factor and reserve factor or deterministic system redundancy factor and reserve factor. The system reliability of bridges is formulated as a parallel-series model obtained from the FAM(Failure Mode Approach) based on the major failure mechanisms. AFOSM and IST methods are used for the reliability analysis of the proposed models. The proposed approach and method for the system redundancy and reserve safety/strength are applied to the safety assessment of actual RC and steel box-girder bridges. The results of the evaluation of reserved system safety or bridge system-strength in terms of the system redundancy and the system safety/strength are significantly different from those of element reliability-based or conventional methods.

  • PDF

차량 통행하중에 대한 사장교의 신뢰성에 기초한 안전도 및 내하력평가 (Reliability Based Assessment of Safety and Load Carrying Capacity of Cable-Stayed Bridge under Vehicle Traffic Loads)

  • 조효남;이승재;임종권
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.199-208
    • /
    • 1994
  • One of the main objectives of the study is to propose a practical but realistic limit state model considering combined effect of axial and bending load for reliability analysis and safety assessment of cable-stayed bridge under vehicle traffic loads. This paper is intended to propose a new approach for the evaluation of reserved load carrying capacity of cable-stayed bridge under vehicle traffic loads in terms of equivalent strength, which may be defined as a bridge strength corresponding to the reliability index of the bridge. This can be derived from an inverse process based on the concept of FOSM form of reliability index. AFOSM and IST methods are used for the reliability analysis of the proposed models. The proposed reliability model and methods are applied to the safety assessment of Jindo Bridge which is one of major two cable-stayed bridges in Korea.

  • PDF

A dynamic human reliability assessment approach for manned submersibles using PMV-CREAM

  • Zhang, Shuai;He, Weiping;Chen, Dengkai;Chu, Jianjie;Fan, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.782-795
    • /
    • 2019
  • Safety is always acritical focus of exploration of ocean resources, and it is well recognized that human factor is one of the major causes of accidents and breakdowns. Our research developed a dynamic human reliability assessment approach, Predicted Mean Vote-Cognitive Reliability and Error Analysis Method (PMV-CREAM), that is applicable to monitoring the cognitive reliability of oceanauts during deep-sea missions. Taking into account the difficult and variable operating environment of manned submersibles, this paper analyzed the cognitive actions of oceanauts during the various procedures required by deep-sea missions, and calculated the PMV index using human factors and dynamic environmental data. The Cognitive Failure Probabilities (CFP) were calculated using the extended CREAM approach. Finally, the CFP were corrected using the PMV index. This PMV-CREAM hybrid model can be utilized to avoid human error in deep-sea research, thereby preventing injury and loss of life during undersea work. This paper verified the method with "Jiaolong" manned submersible 7,000 m dive test. The"Jiaolong" oceanauts CR(Corrected CFP) is dynamic from 3.0615E-3 to 4.2948E-3, the CR caused by the environment is 1.2333E-3. The result shown the PMV-CREAM method could describe the dynamic human reliability of manned submersible caused by thermal environment.

전자기 시스템의 신뢰성 기반 위상최적설계 (Reliability-based Topology Optimization for Electromagnetic Systems)

  • 강제남;김좌일;왕세명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.741-743
    • /
    • 2003
  • A reliability-based topology optimization (RBTO) for electromagnetic systems using the finite element method is presented. Permeability and applied current density are considered as uncertain variable. In order to compute reliability constraints, performance measure approach is used. To find the reliability index, the limit state function is linearly approximated at each iteration. Numerical examples show the effectiveness of the proposed method.

  • PDF

장애 함수를 이용한 신뢰성 기반 최적 설계 (Reliability Based Design Optimization Using Barrier Function)

  • 이태희;최운용;이광기
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2002년도 정기학술대회
    • /
    • pp.211-216
    • /
    • 2002
  • 실제적인 문제에서 신뢰성 기반 최적 설계(RBDO)를 구현하기 위해서는 유한요소 모델을 해석하기 위한 상용 프로그램과 설계한 것에 대한 신뢰성을 산정할 수 있는 프로그램을 통합하고 최적화 알고리듬을 적용하여야 최적화를 수행하여야만 한다. 또한 최적화 과정에서 최적상태에서 제약조건이 비활성 영역에서 놓이게 되는 것을 방지하기 위해서 제약조건 최적화 문제를 비제약 조건 최적화 문제로 바꾸어 주는 장애 함수를 사용하여 최적화를 수행하였다. 그리고 이 방법론을 기존의 신뢰성기반 최적화 방법론, 즉 신뢰도지수 접근방법과 목표성능치 접근방법과의 비교를 하였다.

  • PDF

장애함수법에 의한 신뢰성기반 최적설계 (Barrier Function Method in Reliability Based Design Optimization)

  • 이태희;최운용;김홍선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

A new damage index for detecting sudden change of structural stiffness

  • Chen, B.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.315-341
    • /
    • 2007
  • A sudden change of stiffness in a structure, associated with the events such as weld fracture and brace breakage, will cause a discontinuity in acceleration response time histories recorded in the vicinity of damage location at damage time instant. A new damage index is proposed and implemented in this paper to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. The proposed damage index is suitable for online structural health monitoring applications. It can also be used in conjunction with the empirical mode decomposition (EMD) for damage detection without using the intermittency check. Numerical simulation using a five-story shear building under different types of excitation is executed to assess the effectiveness and reliability of the proposed damage index and damage detection approach for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also examined. The results from this study demonstrate that the damage index and damage detection approach proposed can accurately identify the damage time instant and location in the building due to a sudden loss of stiffness if measurement noise is below a certain level. The relation between the damage severity and the proposed damage index is linear. The wavelet-transform (WT) and the EMD with intermittency check are also applied to the same building for the comparison of detection efficiency between the proposed approach, the WT and the EMD.