References
- Akimoto, T., ichi Tanabe, S., Yanai, T., Sasaki, M., 2010. Thermal comfort and productivity - evaluation of workplace environment in a task conditioned office. Build. Environ. 45, 45-50. https://doi.org/10.1016/j.buildenv.2009.06.022.
- Ashley, S., 1993. Voyage to the bottom of the sea. Mech. Eng. 115, 52.
- ASHRAE, 2004. Thermal environmental conditions for human occupancy, ASHRAE standard 55. Am. Soc. Heating, Refrig. Air-Conditioning Eng. 55 (2004). Atlanta, GA.
- Blackman, H.S., Gertman, D.I., Boring, R.L., 2008. Human error quantification using performance shaping factors in the SPAR-H method. In: Proc. Hum. Factors Ergon. Soc. Annu. Meet., pp. 1733-1737. https://doi.org/10.1177/154193120805202109.
- Boring, R.L., 2007. Dynamic human reliability analysis: benefits and challenges of simulating human performance. Proc. Eur. Saf. Reliab. Conf. (ESREL 2007) 1043-1050.
- Boulegue, J., Iiyama, J.T., Charlou, J.-L., Jedwab, J., 1987. Nankai trough, Japan trench and kuril trench: geochemistry of fluids sampled by submersible "Nautile". Earth Planet. Sci. Lett. 83, 363-375. https://doi.org/10.1016/0012-821X(87)90078-1.
- CEN, 2007. prEN 15251: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings-Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. Eur. Comm. Stand.
- Chen, Z., Zhang, W., Dong, D., Lu, K., 2017. An extended CREAM by modified algorithm to human reliability quantification in marine engineering. In: Proc. - Annu. Reliab. Maintainab. Symp.. https://doi.org/10.1109/RAM.2017.7889696.
- Embrey, D.E., Humphreys, P., Rosa, E.A., Kirwan, B., Rea, K., 1984. SLIM-MAUD: an Approach to Assessing Human Error Probabilities Using Structured Expert Judgment. Volume II. Detailed Analysis of the Technical Issues.
- Fanger, P.O., 1970. Thermal comfort. Analysis and applications in environmental engineering. In: Therm. Comf. Anal. Appl. Environ. Eng., Danish Technical Press, Copenhagen, p. 244.
- GB/T, 2012. Evaluation Standard for Indoor Thermal Environment in Civil Buildings, GB/T 50785(in Chinese). Minist. Hous. Urban-Rural Dev, People's Repub. China, Beijing.
- Geng, Y., Ji, W., Lin, B., Zhu, Y., 2017. The impact of thermal environment on occupant IEQ perception and productivity. Build. Environ. 121, 158-167. https://doi.org/10.1016/j.buildenv.2017.05.022.
- Hancher, D.E., Abd-Elkhalek, H.A., 1998. Effect of hot weather on construction labor productivity and costs. Cost Eng. 40, 32-36.
- Hardy, K., Cameron, J., Herbst, L., Bulman, T., Pausch, S., 2013. Hadal landers: the DEEPSEA CHALLENGE ocean trench free vehicles. In: Ocean. Diego, vol 2013, pp. 1-10. https://doi.org/10.23919/OCEANS.2013.6741368.
- Hollnagel, E., 1998. Cognitive Reliability and Error Analysis Method (CREAM). https://doi.org/10.1016/B978-008042848-2/50001-4.
- ISO, 2005. 7730 Ergonomics of the Thermal Environment, Anal. Determ. Interpret. Therm. Comf. Using Calc. PMV PPD Indices Local Therm. Comf. Criteria. International Organization for Standardization, Geneva, Switzerland.
- Iwai, Y., Nakanishi, T., Takahashi, K., 1990. Sea trials and supporting technologies of manned submersible Shinkai 6500. In: Interv. Sous-Marine ISM 90, Toulon (France), 3-5 Dec 1990.
- Jin, L., Zhang, Y., Zhang, Z., 2017. Human responses to high humidity in elevated temperatures for people in hot-humid climates. Build. Environ. 114, 257-266. https://doi.org/10.1016/j.buildenv.2016.12.028.
- Koehn, E., Brown, G., 1985. Climatic effects on construction. J. Constr. Eng. Manag. 111, 129-137. https://doi.org/10.1061/(ASCE)0733-9364(1985)111:2(129).
- Kohnen, W., 2009. Human exploration of the deep seas: fifty years and the inspiration continues. Mar. Technol. Soc. J. 43, 42-62. https://doi.org/10.4031/MTSJ.43.5.30.
- Kosonen, R., Tan, F., 2004. Assessment of productivity loss in air-conditioned buildings using PMV index. Energy Build. 36, 987-993. https://doi.org/10.1016/j.enbuild.2004.06.021.
- Lan, L., Wargocki, P., Lian, Z., 2011. Quantitative measurement of productivity loss due to thermal discomfort. Energy Build. 43, 1057-1062. https://doi.org/10.1016/j.enbuild.2010.09.001.
- Liu, F., Cui, W.C., Li, X.Y., 2010. China's first deep manned submersible. JIAOLONG, Sci. China Earth Sci. 53, 1407-1410. https://doi.org/10.1007/s11430-010-4100-2.
- Luo, M., de Dear, R., Ji, W., Bin, C., Lin, B., Ouyang, Q., Zhu, Y., 2016. The dynamics of thermal comfort expectations: the problem, challenge and implication. Build. Environ. 95, 322-329. https://doi.org/10.1016/j.buildenv.2015.07.015.
- Mohamed, S., Srinavin, K., 2005. Forecasting labor productivity changes in construction using the PMV index. Int. J. Ind. Ergon. 35, 345-351. https://doi.org/10.1016/j.ergon.2004.09.008.
- Ole Fanger, P., Toftum, J., 2002. Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy Build. 34, 533-536. https://doi.org/10.1016/S0378-7788(02)00003-8.
- Pourzanjani, M., Zheng, P., 2001. Human reliability assessment for ship encounters. In: Saf. Reliab., pp. 21-30. https://doi.org/10.1080/09617353.2001.11690712.
- Pyy, P., 2000. An approach for assessing human decision reliability. Reliab. Eng. Syst. Saf. 68, 17-28. https://doi.org/10.1016/S0951-8320(99)00078-2.
- Randolph Thomas, H., Yiakoumis, I., 1987. Factor model of construction productivity. J. Constr. Eng. Manag. 113, 623-639. https://doi.org/10.1061/(ASCE)0733-9364(1987)113:4(623).
- Sagalevitch, 1998. Experience of the use of manned submersibles in PP shirshov institute of oceanology of Russian academy of sciences. In: Underw. Technol. 1998. Proc. 1998 Int. Symp., pp. 403-407. https://doi.org/10.1109/UT.1998.670137.
- Sarhan, A.M., Tadj, L., Al-khedhairi, A., Mustafa, A., 2008. Equivalence factors of a parallel-series system. Appl. Sci. 10, 219-230. https://doi.org/10.3390/app10010219
- Schellen, L., Loomans, M.G.L.C., de Wit, M.H., Olesen, B.W., Lichtenbelt, W.D. van M., 2012. The influence of local effects on thermal sensation under non-uniform environmental conditions - gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling. Physiol. Behav. 107, 252-261. https://doi.org/10.1016/j.physbeh.2012.07.008.
- Sulaiman, A.H. Saharuddin, Kader, A.S.A., 2012. Human reliability analysis (HRA) emanating from use of technology for ships navigating within coastal area. Afr. J. Bus. Manag. 6, 3602. https://doi.org/10.5897/AJBM10.1636.
- Sun, Y.P., Zhu, N., Tian, Z., 2012. Measurement and evaluation for productivity in extreme hot environment. Appl. Mech. Mater. 209-211, 1496-1499. https://doi.org/10.4028/www.scientific.net/AMM.209-211.1496.
- Swain, A.D., 1963. Method for Performing a Human-Factors Reliability Analysis.
- Taylor, L., Lawson, T., 2009. Project deepsearch: an innovative solution for accessing the oceans. Mar. Technol. Soc. J. 43, 169-177. https://doi.org/10.4031/MTSJ.43.5.28.
- Thompson, C.M., Cooper, S.E., Kolaczkowski, A.M., Bley, D.C., Forester, J.A., Wreathall, J., 1997. The application of ATHEANA: a technique for human error analysis. In: Hum. Factors Power Plants, 1997. Glob. Perspect. Hum. Factors Power Gener. Proc. 1997 IEEE Sixth Conf., pp. 9-13. https://doi.org/10.1109/HFPP.1997.624860.
- Tingle, C., 2009. Submarine accidents. Prof. Saf. 54, 31-39.
- Ung, S.-T., 2015. A weighted CREAM model for maritime human reliability analysis. Saf. Sci. 72, 144-152. https://doi.org/10.1016/j.ssci.2014.08.012.
- Van Hoof, J., 2008. Forty years of Fanger's model of thermal comfort: comfort for all? Indoor Air 18, 182-201. https://doi.org/10.1111/j.1600-0668.2007.00516.x.
- Walden, B.B., Brown, R.S., 2004. A replacement for the Alvin submersible. Mar. Technol. Soc. J. 38, 85-91. https://doi.org/10.4031/002533204787522721.
- Webb, R.D., Lamoureux, T.M., 2003. Human Reliability and Ship Stability.
- Williams, J.C., 1988. A data-based method for assessing and reducing human error to improve operational performance. In: Hum. Factors Power Plants, 1988., Conf. Rec. 1988 IEEE Fourth Conf., pp. 436-450. https://doi.org/10.1109/HFPP.1988.27540.
- Yalaoui, A., Chu, C., Chatelet, E., 2005. Reliability allocation problem in a seriesparallel system. Reliab. Eng. Syst. Saf. 90, 55-61. https://doi.org/10.1016/j.ress.2004.10.007.
- Yang, Z.L., Bonsall, S., Wall, A., Wang, J., Usman, M., 2013. A modified CREAM to human reliability quantification in marine engineering. Ocean Eng. 58, 293-303. https://doi.org/10.1016/j.oceaneng.2012.11.003.
- Zhang, L., Lu, J., Ai, Y., 2014. Analysis and prediction on combination patterns of human factors for maritime accidents. In: CICTP 2014 Safe, Smart, Sustain. Multimodal Transp. Syst., pp. 2313-2322. https://doi.org/10.1061/9780784413623.222
- Zhou, Q., Wong, Y.D., Xu, H., Van Thai, V., Loh, H.S., Yuen, K.F., 2017. An enhanced CREAM with stakeholder-graded protocols for tanker shipping safety application. Saf. Sci. 95, 140-147. https://doi.org/10.1016/j.ssci.2017.02.01.
Cited by
- Application of card-sorting approach to classify human factors of past maritime accidents vol.48, pp.1, 2019, https://doi.org/10.1080/03088839.2020.1754481
- A Human Reliability Analysis to Crankshaft Overhauling in Dry-Docking of a General Cargo Ship vol.235, pp.1, 2019, https://doi.org/10.1177/1475090220948338
- A formal method for including the probability of erroneous human task behavior in system analyses vol.213, 2021, https://doi.org/10.1016/j.ress.2021.107764