DOI QR코드

DOI QR Code

A dynamic human reliability assessment approach for manned submersibles using PMV-CREAM

  • Zhang, Shuai (Shaanxi Engineering Laboratory for Industrial Design, Northwest Polytechnical University (NWPU)) ;
  • He, Weiping (Shaanxi Engineering Laboratory for Industrial Design, Northwest Polytechnical University (NWPU)) ;
  • Chen, Dengkai (Shaanxi Engineering Laboratory for Industrial Design, Northwest Polytechnical University (NWPU)) ;
  • Chu, Jianjie (Shaanxi Engineering Laboratory for Industrial Design, Northwest Polytechnical University (NWPU)) ;
  • Fan, Hao (Shaanxi Engineering Laboratory for Industrial Design, Northwest Polytechnical University (NWPU))
  • Received : 2018.09.18
  • Accepted : 2019.03.06
  • Published : 2019.02.18

Abstract

Safety is always acritical focus of exploration of ocean resources, and it is well recognized that human factor is one of the major causes of accidents and breakdowns. Our research developed a dynamic human reliability assessment approach, Predicted Mean Vote-Cognitive Reliability and Error Analysis Method (PMV-CREAM), that is applicable to monitoring the cognitive reliability of oceanauts during deep-sea missions. Taking into account the difficult and variable operating environment of manned submersibles, this paper analyzed the cognitive actions of oceanauts during the various procedures required by deep-sea missions, and calculated the PMV index using human factors and dynamic environmental data. The Cognitive Failure Probabilities (CFP) were calculated using the extended CREAM approach. Finally, the CFP were corrected using the PMV index. This PMV-CREAM hybrid model can be utilized to avoid human error in deep-sea research, thereby preventing injury and loss of life during undersea work. This paper verified the method with "Jiaolong" manned submersible 7,000 m dive test. The"Jiaolong" oceanauts CR(Corrected CFP) is dynamic from 3.0615E-3 to 4.2948E-3, the CR caused by the environment is 1.2333E-3. The result shown the PMV-CREAM method could describe the dynamic human reliability of manned submersible caused by thermal environment.

Keywords

References

  1. Akimoto, T., ichi Tanabe, S., Yanai, T., Sasaki, M., 2010. Thermal comfort and productivity - evaluation of workplace environment in a task conditioned office. Build. Environ. 45, 45-50. https://doi.org/10.1016/j.buildenv.2009.06.022.
  2. Ashley, S., 1993. Voyage to the bottom of the sea. Mech. Eng. 115, 52.
  3. ASHRAE, 2004. Thermal environmental conditions for human occupancy, ASHRAE standard 55. Am. Soc. Heating, Refrig. Air-Conditioning Eng. 55 (2004). Atlanta, GA.
  4. Blackman, H.S., Gertman, D.I., Boring, R.L., 2008. Human error quantification using performance shaping factors in the SPAR-H method. In: Proc. Hum. Factors Ergon. Soc. Annu. Meet., pp. 1733-1737. https://doi.org/10.1177/154193120805202109.
  5. Boring, R.L., 2007. Dynamic human reliability analysis: benefits and challenges of simulating human performance. Proc. Eur. Saf. Reliab. Conf. (ESREL 2007) 1043-1050.
  6. Boulegue, J., Iiyama, J.T., Charlou, J.-L., Jedwab, J., 1987. Nankai trough, Japan trench and kuril trench: geochemistry of fluids sampled by submersible "Nautile". Earth Planet. Sci. Lett. 83, 363-375. https://doi.org/10.1016/0012-821X(87)90078-1.
  7. CEN, 2007. prEN 15251: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings-Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. Eur. Comm. Stand.
  8. Chen, Z., Zhang, W., Dong, D., Lu, K., 2017. An extended CREAM by modified algorithm to human reliability quantification in marine engineering. In: Proc. - Annu. Reliab. Maintainab. Symp.. https://doi.org/10.1109/RAM.2017.7889696.
  9. Embrey, D.E., Humphreys, P., Rosa, E.A., Kirwan, B., Rea, K., 1984. SLIM-MAUD: an Approach to Assessing Human Error Probabilities Using Structured Expert Judgment. Volume II. Detailed Analysis of the Technical Issues.
  10. Fanger, P.O., 1970. Thermal comfort. Analysis and applications in environmental engineering. In: Therm. Comf. Anal. Appl. Environ. Eng., Danish Technical Press, Copenhagen, p. 244.
  11. GB/T, 2012. Evaluation Standard for Indoor Thermal Environment in Civil Buildings, GB/T 50785(in Chinese). Minist. Hous. Urban-Rural Dev, People's Repub. China, Beijing.
  12. Geng, Y., Ji, W., Lin, B., Zhu, Y., 2017. The impact of thermal environment on occupant IEQ perception and productivity. Build. Environ. 121, 158-167. https://doi.org/10.1016/j.buildenv.2017.05.022.
  13. Hancher, D.E., Abd-Elkhalek, H.A., 1998. Effect of hot weather on construction labor productivity and costs. Cost Eng. 40, 32-36.
  14. Hardy, K., Cameron, J., Herbst, L., Bulman, T., Pausch, S., 2013. Hadal landers: the DEEPSEA CHALLENGE ocean trench free vehicles. In: Ocean. Diego, vol 2013, pp. 1-10. https://doi.org/10.23919/OCEANS.2013.6741368.
  15. Hollnagel, E., 1998. Cognitive Reliability and Error Analysis Method (CREAM). https://doi.org/10.1016/B978-008042848-2/50001-4.
  16. ISO, 2005. 7730 Ergonomics of the Thermal Environment, Anal. Determ. Interpret. Therm. Comf. Using Calc. PMV PPD Indices Local Therm. Comf. Criteria. International Organization for Standardization, Geneva, Switzerland.
  17. Iwai, Y., Nakanishi, T., Takahashi, K., 1990. Sea trials and supporting technologies of manned submersible Shinkai 6500. In: Interv. Sous-Marine ISM 90, Toulon (France), 3-5 Dec 1990.
  18. Jin, L., Zhang, Y., Zhang, Z., 2017. Human responses to high humidity in elevated temperatures for people in hot-humid climates. Build. Environ. 114, 257-266. https://doi.org/10.1016/j.buildenv.2016.12.028.
  19. Koehn, E., Brown, G., 1985. Climatic effects on construction. J. Constr. Eng. Manag. 111, 129-137. https://doi.org/10.1061/(ASCE)0733-9364(1985)111:2(129).
  20. Kohnen, W., 2009. Human exploration of the deep seas: fifty years and the inspiration continues. Mar. Technol. Soc. J. 43, 42-62. https://doi.org/10.4031/MTSJ.43.5.30.
  21. Kosonen, R., Tan, F., 2004. Assessment of productivity loss in air-conditioned buildings using PMV index. Energy Build. 36, 987-993. https://doi.org/10.1016/j.enbuild.2004.06.021.
  22. Lan, L., Wargocki, P., Lian, Z., 2011. Quantitative measurement of productivity loss due to thermal discomfort. Energy Build. 43, 1057-1062. https://doi.org/10.1016/j.enbuild.2010.09.001.
  23. Liu, F., Cui, W.C., Li, X.Y., 2010. China's first deep manned submersible. JIAOLONG, Sci. China Earth Sci. 53, 1407-1410. https://doi.org/10.1007/s11430-010-4100-2.
  24. Luo, M., de Dear, R., Ji, W., Bin, C., Lin, B., Ouyang, Q., Zhu, Y., 2016. The dynamics of thermal comfort expectations: the problem, challenge and implication. Build. Environ. 95, 322-329. https://doi.org/10.1016/j.buildenv.2015.07.015.
  25. Mohamed, S., Srinavin, K., 2005. Forecasting labor productivity changes in construction using the PMV index. Int. J. Ind. Ergon. 35, 345-351. https://doi.org/10.1016/j.ergon.2004.09.008.
  26. Ole Fanger, P., Toftum, J., 2002. Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy Build. 34, 533-536. https://doi.org/10.1016/S0378-7788(02)00003-8.
  27. Pourzanjani, M., Zheng, P., 2001. Human reliability assessment for ship encounters. In: Saf. Reliab., pp. 21-30. https://doi.org/10.1080/09617353.2001.11690712.
  28. Pyy, P., 2000. An approach for assessing human decision reliability. Reliab. Eng. Syst. Saf. 68, 17-28. https://doi.org/10.1016/S0951-8320(99)00078-2.
  29. Randolph Thomas, H., Yiakoumis, I., 1987. Factor model of construction productivity. J. Constr. Eng. Manag. 113, 623-639. https://doi.org/10.1061/(ASCE)0733-9364(1987)113:4(623).
  30. Sagalevitch, 1998. Experience of the use of manned submersibles in PP shirshov institute of oceanology of Russian academy of sciences. In: Underw. Technol. 1998. Proc. 1998 Int. Symp., pp. 403-407. https://doi.org/10.1109/UT.1998.670137.
  31. Sarhan, A.M., Tadj, L., Al-khedhairi, A., Mustafa, A., 2008. Equivalence factors of a parallel-series system. Appl. Sci. 10, 219-230. https://doi.org/10.3390/app10010219
  32. Schellen, L., Loomans, M.G.L.C., de Wit, M.H., Olesen, B.W., Lichtenbelt, W.D. van M., 2012. The influence of local effects on thermal sensation under non-uniform environmental conditions - gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling. Physiol. Behav. 107, 252-261. https://doi.org/10.1016/j.physbeh.2012.07.008.
  33. Sulaiman, A.H. Saharuddin, Kader, A.S.A., 2012. Human reliability analysis (HRA) emanating from use of technology for ships navigating within coastal area. Afr. J. Bus. Manag. 6, 3602. https://doi.org/10.5897/AJBM10.1636.
  34. Sun, Y.P., Zhu, N., Tian, Z., 2012. Measurement and evaluation for productivity in extreme hot environment. Appl. Mech. Mater. 209-211, 1496-1499. https://doi.org/10.4028/www.scientific.net/AMM.209-211.1496.
  35. Swain, A.D., 1963. Method for Performing a Human-Factors Reliability Analysis.
  36. Taylor, L., Lawson, T., 2009. Project deepsearch: an innovative solution for accessing the oceans. Mar. Technol. Soc. J. 43, 169-177. https://doi.org/10.4031/MTSJ.43.5.28.
  37. Thompson, C.M., Cooper, S.E., Kolaczkowski, A.M., Bley, D.C., Forester, J.A., Wreathall, J., 1997. The application of ATHEANA: a technique for human error analysis. In: Hum. Factors Power Plants, 1997. Glob. Perspect. Hum. Factors Power Gener. Proc. 1997 IEEE Sixth Conf., pp. 9-13. https://doi.org/10.1109/HFPP.1997.624860.
  38. Tingle, C., 2009. Submarine accidents. Prof. Saf. 54, 31-39.
  39. Ung, S.-T., 2015. A weighted CREAM model for maritime human reliability analysis. Saf. Sci. 72, 144-152. https://doi.org/10.1016/j.ssci.2014.08.012.
  40. Van Hoof, J., 2008. Forty years of Fanger's model of thermal comfort: comfort for all? Indoor Air 18, 182-201. https://doi.org/10.1111/j.1600-0668.2007.00516.x.
  41. Walden, B.B., Brown, R.S., 2004. A replacement for the Alvin submersible. Mar. Technol. Soc. J. 38, 85-91. https://doi.org/10.4031/002533204787522721.
  42. Webb, R.D., Lamoureux, T.M., 2003. Human Reliability and Ship Stability.
  43. Williams, J.C., 1988. A data-based method for assessing and reducing human error to improve operational performance. In: Hum. Factors Power Plants, 1988., Conf. Rec. 1988 IEEE Fourth Conf., pp. 436-450. https://doi.org/10.1109/HFPP.1988.27540.
  44. Yalaoui, A., Chu, C., Chatelet, E., 2005. Reliability allocation problem in a seriesparallel system. Reliab. Eng. Syst. Saf. 90, 55-61. https://doi.org/10.1016/j.ress.2004.10.007.
  45. Yang, Z.L., Bonsall, S., Wall, A., Wang, J., Usman, M., 2013. A modified CREAM to human reliability quantification in marine engineering. Ocean Eng. 58, 293-303. https://doi.org/10.1016/j.oceaneng.2012.11.003.
  46. Zhang, L., Lu, J., Ai, Y., 2014. Analysis and prediction on combination patterns of human factors for maritime accidents. In: CICTP 2014 Safe, Smart, Sustain. Multimodal Transp. Syst., pp. 2313-2322. https://doi.org/10.1061/9780784413623.222
  47. Zhou, Q., Wong, Y.D., Xu, H., Van Thai, V., Loh, H.S., Yuen, K.F., 2017. An enhanced CREAM with stakeholder-graded protocols for tanker shipping safety application. Saf. Sci. 95, 140-147. https://doi.org/10.1016/j.ssci.2017.02.01.

Cited by

  1. Application of card-sorting approach to classify human factors of past maritime accidents vol.48, pp.1, 2019, https://doi.org/10.1080/03088839.2020.1754481
  2. A Human Reliability Analysis to Crankshaft Overhauling in Dry-Docking of a General Cargo Ship vol.235, pp.1, 2019, https://doi.org/10.1177/1475090220948338
  3. A formal method for including the probability of erroneous human task behavior in system analyses vol.213, 2021, https://doi.org/10.1016/j.ress.2021.107764