• Title/Summary/Keyword: Reliability Growth Models

Search Result 127, Processing Time 0.029 seconds

A Study on ENHPP Software Reliability Growth Model based on Exponentiated Exponential Coverage Function (지수화 지수 커버리지 함수를 고려한 ENHPP 소프트웨어 신뢰성장 모형에 관한 연구)

  • Kim, Hee-Cheul
    • The Journal of Information Technology
    • /
    • v.10 no.2
    • /
    • pp.47-64
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. Accurate predictions of software release times, and estimation of the reliability and availability of a software product require quantification of a critical element of the software testing process : test coverage. This model called enhanced non-homogeneous poission process(ENHPP). In this paper, exponential coverage and S-coverage model was reviewed, proposes the exponentiated exponential coverage reliability model, which maked out efficiency substituted for gamma and Weibull model(2 parameter shape illustrated by Gupta and Kundu(2001). In this analysis of software failure data, algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE statistics for the sake of efficient model, was employed.

  • PDF

A Study for NHPP software Reliability Growth Model based on polynomial hazard function (다항 위험함수에 근거한 NHPP 소프트웨어 신뢰성장모형에 관한 연구)

  • Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.7-14
    • /
    • 2011
  • Infinite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rate per fault (hazard function). This infinite non-homogeneous Poisson process is model which reflects the possibility of introducing new faults when correcting or modifying the software. In this paper, polynomial hazard function have been proposed, which can efficiency application for software reliability. Algorithm for estimating the parameters used to maximum likelihood estimator and bisection method. Model selection based on mean square error and the coefficient of determination for the sake of efficient model were employed. In numerical example, log power time model of the existing model in this area and the polynomial hazard function model were compared using failure interval time. Because polynomial hazard function model is more efficient in terms of reliability, polynomial hazard function model as an alternative to the existing model also were able to confirm that can use in this area.

A Software Reliability Growth Model with Probability of Imperfect Debugging (결함 제거의 실패를 고려하는 소프트웨어 신뢰도 모델)

  • Kim, Y.H.;Kim, S.I.;Lee, W.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 1992
  • Common assumption we frequently encounter in early models of software reliability is that no new faults are introduced during the fault removal process. In real life, however, there are situations in which new faults are introducted as a result of imperfect debugging. This study alleviating this assumption by introducting the probability of perfect error-correction is an extension of Littlewood's work. In this model, the system reliability, failure rates, mean time to failure and average failure frequency are obtained. Here, when the probability of perfect error-correction is one, the results appear identical with those of the previous studies. In the respect that the results of previous studies are special cases of this model, the model developed can be considered as a generalized one.

  • PDF

A Study on the Imperfect Debugging Effect on Release Time of Dedicated Develping Software (불완전디버깅이 주문형 개발소프트웨어의 인도시기에 미치는 영향 연구)

  • Che Gyu Shik
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2004
  • The software reliability growth model(SRGM) has been developed in order to estimate such reliability measures as remaining fault number, failure rate and reliability for the developing stage software. Almost of them assumed that the faults detected during testing were evetually removed. Namely, they have studied SRGM based on the assumption that the faults detected during testing were perfectly removed. The fault removing efficiency. however. IS imperfect and it is widely known as so in general. It is very difficult to remove detected fault perfectly because the fault detecting is not easy and new error may be introduced during debugging and correcting. Therefore, the fault detecting efficiency may influence the SRGM or cost of developing software. It is a very useful measure for the developing software. much helpful for the developer to evaluate the debugging efficiency, and, moreover, help to additional workloads necessary. Therefore. it is very important to evaluate the effect of imperfect dubugging in point of SRGM and cost. and may influence the optimal release time and operational budget. I extent and study the generally used reliability and cost models to the imperfect debugging range in this paper.

  • PDF

The Study for NHPP Software Reliability Growth Model Based on Hyper-exponential Distribution (초지수분포(Hyper-exponential)를 이용한 소프트웨어 신뢰성장 모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the hyper-exponential distribution reliability model, which maked out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method. For model determination and selection, explored goodness of fit (the error sum of squares). The methodology developed in this paper is exemplified with a software reliability random data set introduced by of Weibull distribution (shape 0.1 & scale 1) of Minitab (version 14) statistical package.

  • PDF

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Reliability in longitudinal study (종단적 연구의 신뢰도)

  • Jinuk Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.61-72
    • /
    • 2024
  • The purpose of this study is to investigate retest reliabilities in longitudinal study, the same test is administered repeatedly over time. Linear mixed models were used to establish various situations of tests occurred in longitudinal study. Combination of two types of true value and three types of systematic error was considered. In order to apply the models to real longitudinal data, height data from the Berkeley growth study and vocabulary score data from the University of Chicago experimental school were used. Using the mixed model, there is an advantage that the reliability can be determined by selecting the covariance structure of the true value and the error separately. However, in order to properly analyze the reliability, researchers need to consider variations that can occur in measurement, such as characteristics of subject, the test, and the the treatment applied in the study. And the proper model should be selected and the quality of the measurement should be evaluated for each trial.

Analysis of Software Reliability Growth Model with Gamma Family Distribution (감마족 분포를 이용한 소프트웨어 신뢰 성장 모형의 분석)

  • Kan, Kwang-Hyun;Jang, Byeong-Ok;Kim, Hee-Cheul
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.143-151
    • /
    • 2005
  • Finite failure NHPP models proposed in the literature exhibit is either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. For the sake of proposing shape parameter of the Gamma family distribution, used the special pattern. Data set, where the underlying failure process could not be adequately described by the knowing models, which motivated the development of the Gamma or Weibull model and Gompertz model. Analysis of failure data set that led us to the Gamma or Weibull model and Gompertz model using arithmetic and Laplace trend tests, bias tests was presented in this Paper.

  • PDF

The Comparative Study for NHPP Software Reliability Growth Model Based on Non-linear Intensity Function (비선형 강도함수를 가진 NHPP 소프트웨어 신뢰성장 모형에 관한 비교 연구)

  • Kim, Hee-Cheul
    • Convergence Security Journal
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault (intensity function). In this paper, intensity function of Goel-Okumoto model was reviewed, proposes Kappa (2) and the Burr distribution, which maked out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method. For model determination and selection, explored goodness of fit (the error sum of squares) The methodology developed in this paper is exemplified with a software reliability real data set introduced by NTDS (Naval Tactical Data System)

  • PDF

Reliability of Maintained Hull Girders of Two Bulk Carrier Designs Subjected to Fatigue and Corrosion

  • Soares, C.Guedes;Garbatov, Y.
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.1
    • /
    • pp.27-41
    • /
    • 1999
  • The objective of the paper is to study the impact of changing the traditional hull design of bulk carriers by providing them with a double hull while keeping the same deadweight. It is demonstrated that by introducing the double hull the structural reliability is increased throughout the entire life and also the extend of the needed repair is reduced. The results are obtained with recently developed mathematical tools for the reliability assessment of ship hulls subjected to the existence of multiple cracks both in the stiffeners and in the plating and it models the crack growth process. The effect of corrosion is represented as time dependent. The long-term stress range acting on the elements is defined as a function of the local transverse pressure of the internal cargo and outside sea water combined with the stresses resulting from the longitudinal bending of the hull, which is a combined with the stresses resulting from the longitudinal bending of the hull, which is a combineation of horizontal and vertical bending moments. The effect of maintenance actions is modelled as a stochastic process. The results show that a different design of the midship section improves the structural safety and also the economy with respect to structural repair of bulk carriers.

  • PDF