• Title/Summary/Keyword: Release Time for Software

Search Result 79, Processing Time 0.029 seconds

Study on Fire Simulation in College Dormitories Based on Pyrosim

  • Zechen Zhang;Hasung Kong
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.321-327
    • /
    • 2024
  • In recent years, the frequency of fires in college dormitories has been increasing, primarily due to outdated electrical wiring and improper use of electrical appliances. Given the high population density in such buildings, fires can cause significant damage to life and property. To better understand the dynamics of dormitory fires, this study uses Pyrosim fire simulation software to model fire scenarios in a six-story male dormitory. The study focuses on analyzing key factors such as heat release rates, smoke spread, temperature changes, and carbon monoxide concentrations during a fire. Simulation results indicate that smoke spreads rapidly after a fire breaks out, significantly reducing visibility and hindering evacuation efforts. Simultaneously, temperatures near the fire source rise quickly, exceeding safe levels, and carbon monoxide concentrations reach dangerous thresholds in a short time, greatly increasing the risk of poisoning. Based on these findings, the study proposes several recommendations to improve fire prevention in dormitories, including installing smoke barriers, improving evacuation routes, adding mechanical smoke extraction systems, and enhancing students' fire safety awareness and skills through regular training. These measures are crucial for reducing fire risks and enhancing fire safety in college dormitories.

Performance Comparison of Android Dalvik and Java Virtual Machines (안드로이드 달빅과 자바 가상머신의 성능비교)

  • Lee, Jong-Hyuk;Kim, Hyung-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.486-492
    • /
    • 2011
  • In this paper we analyzed performance of Andriod's Davik virtual machine(VM) using standard benchmark and compared the result with the embedded Java virtual machine. We used a well known benchmark suit named SPECJVM for the measurement. For the fair comparison, Sun Java embedded JVM is ported and the same benchmark is ported on it. The Odriod smartphone hardware platform is used as the target hardware. We have added a Just-In-Time compiler to Dalvik, which is not supported in the recent Android release, and measured performance improvement. The experiment result show that Dalvik achieved 15% and Dalvik with JIT shows 63% of the Sun's JVM performance.

Research on rapid source term estimation in nuclear accident emergency decision for pressurized water reactor based on Bayesian network

  • Wu, Guohua;Tong, Jiejuan;Zhang, Liguo;Yuan, Diping;Xiao, Yiqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2534-2546
    • /
    • 2021
  • Nuclear emergency preparedness and response is an essential part to ensure the safety of nuclear power plant (NPP). Key support technologies of nuclear emergency decision-making usually consist of accident diagnosis, source term estimation, accident consequence assessment, and protective action recommendation. Source term estimation is almost the most difficult part among them. For example, bad communication, incomplete information, as well as complicated accident scenario make it hard to determine the reactor status and estimate the source term timely in the Fukushima accident. Subsequently, it leads to the hard decision on how to take appropriate emergency response actions. Hence, this paper aims to develop a method for rapid source term estimation to support nuclear emergency decision making in pressurized water reactor NPP. The method aims to make our knowledge on NPP provide better support nuclear emergency. Firstly, this paper studies how to build a Bayesian network model for the NPP based on professional knowledge and engineering knowledge. This paper presents a method transforming the PRA model (event trees and fault trees) into a corresponding Bayesian network model. To solve the problem that some physical phenomena which are modeled as pivotal events in level 2 PRA, cannot find sensors associated directly with their occurrence, a weighted assignment approach based on expert assessment is proposed in this paper. Secondly, the monitoring data of NPP are provided to the Bayesian network model, the real-time status of pivotal events and initiating events can be determined based on the junction tree algorithm. Thirdly, since PRA knowledge can link the accident sequences to the possible release categories, the proposed method is capable to find the most likely release category for the candidate accidents scenarios, namely the source term. The probabilities of possible accident sequences and the source term are calculated. Finally, the prototype software is checked against several sets of accident scenario data which are generated by the simulator of AP1000-NPP, including large loss of coolant accident, loss of main feedwater, main steam line break, and steam generator tube rupture. The results show that the proposed method for rapid source term estimation under nuclear emergency decision making is promising.

A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD (CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구)

  • Seok, Jun;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.

Validation of underwater explosion response analysis for airbag inflator using a fluid-structure interaction algorithm

  • Lee, Sang-Gab;Lee, Jae-Seok;Chung, Hyun;Na, Yangsup;Park, Kyung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.988-995
    • /
    • 2020
  • Air gun shock systems are commonly used as alternative explosion energy sources for underwater explosion (UNDEX) shock tests owing to their low cost and environmental impact. The airbag inflator of automotive airbag systems is also very useful to generate extremely rapid underwater gas release in labscale tests. To overcome the restrictions on the very small computational time step owing to the very fine fluid mesh around the nozzle hole in the explicit integration algorithm, and also the absence of a commercial solver and software for gas UNDEX of airbag inflator, an idealized airbag inflator and fluid mesh modeling technique was developed using nozzle holes of relatively large size and several small TNT charges instead of gas inside the airbag inflator. The objective of this study is to validate the results of an UNDEX response analysis of one and two idealized airbag inflators by comparison with the results of shock tests in a small water tank. This comparison was performed using the multi-material Arbitrary Lagrangian-Eulerian formulation and fluid-structure interaction algorithm. The number, size, vertical distance from the nozzle outlet, detonation velocity, and lighting times of small TNT charges were determined. Through mesh size convergence tests, the UNDEX response analysis and idealized airbag inflator modeling were validated.

Coactivity of Mast Cells and Stem Cells on Angiogenesis and Antioxidants' Potentials at Inflammation, Proliferation, and Tissue Remodeling Phases of Wound

  • Mousavi, Mahshad;Khanifar, Ahmad;Mousavi, Nazanin;Anbari, Khatereh;Chehelcheraghi, Farzaneh
    • Archives of Plastic Surgery
    • /
    • v.49 no.3
    • /
    • pp.462-470
    • /
    • 2022
  • Background Reactive oxygen species cause serious damage to the physiological function of tissues. Determination of total antioxidant capacity of skin tissue is one of the determinants of damaged tissue function. Mast cells (MCs) are one of the groups of cells that are invited to the site of injury. The healing process begins with the rapid release of various types of MCs' intermediate factors at the site of injury. Bone marrow mesenchymal stem cell (BMMSC) production and secretion have been shown to regenerate the skin. The aim of this research was to evaluate the wound-healing and antioxidant effects of BMMSCs per MCs. Methods Fifty-four albino Wistar male rats were divided into three groups: (1) nonsurgery, (2) surgery, and (3) surgery + BMMSCs. Groups 2 and 3 were operated with a 3 × 8 cm flap and in group 3, cell injections (7 × 109 cell injection at the time of surgery) were performed. After days 4, 7, and 15, percentage of the surviving tissue, histological characteristics, superoxide dismutase (SOD) activity, and amount of malondialdehyde (MDA) were measured in the groups. For results, Graph Pad Prism 8 software was used, and data were analyzed and compared by analysis of variance and Tukey test. Results BMMSCs' application decreased the amount of MDA, increased SOD activity and survival rate of the flaps, and improved the histological characteristics. Conclusion This study revealed the protective effects BMMSCs alongside MCs against oxidative stress on the survival of the flaps. However, for clinical use, more research is needed to determine its benefits.

A Methodology for Consistent Design of User Interaction (일관성 있는 사용자 인터랙션 설계를 위한 방법론 개발)

  • Kim, Dong-San;Yoon, Wan-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.961-970
    • /
    • 2009
  • Over the last decade, interactive devices such as mobile phones have become complicated drastically mainly because of feature creep, the tendency for the number of features in a product to rise with each release of the product. One of the ways to reduce the complexity of a multi-functional device is to design it consistently. Although the definition of consistency is elusive and it is sometimes beneficial to be inconsistent, in general, consistently designed systems are easier to learn, easier to remember, and causing less errors. In practice, however, it is often not easy to design the user interaction or interface of a multi-functional device consistently. Since the interaction design of a multi-functional device should deal with a large number of design variables and relations among them, solving this problem might be very time-consuming and error-prone. Therefore, there is a strong need for a well-developed methodology that supports the complex design process. This study has developed an effective and efficient methodology, called CUID (Consistent Design of User Interaction), which focuses on logical consistency rather than physical or visual consistency. CUID deals with three main problems in interaction design: procedure design for each task, decisions of available operations(or functions) for each system state, and the mapping of available operations(functions) and interface controls. It includes a process for interaction design and a software tool for supporting the process. This paper also demonstrates how CUID supports the consistent design of user interaction by presenting a case study. It shows that the logical inconsistencies of a multi-functional device can be resolved by using the CUID methodology.

  • PDF

The Application of NIRS for Soil Analysis on Organic Matter Fractions, Ash and Mechanical Texture

  • Hsu, Hua;Tsai, Chii-Guary;Recinos-Diaz, Guillermo;Brown, John
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1263-1263
    • /
    • 2001
  • The amounts of organic matter present in soil and the rate of soil organic matter (SOM) turnover are influenced by agricultural management practice, such as rotation, tillage, forage plow down direct seeding and manure application. The amount of nutrients released from SOM is highly dependent upon the state of the organic matter. If it contains a large proportion of light fractions (low-density) more nutrients will be available to the glowing crops. However, if it contains mostly heavy fractions (high-density) that are difficult to breakdown, then lesser amounts of nutrients will be available. The state of the SOM and subsequent release of nutrients into the soil can be predicted by NIRS as long as a robust regression equation is developed. The NIRS method is known for its rapidity, convenience, simplicity, accuracy and ability to analyze many constituents at the same time. Our hypothesis is that the NIRS technique allows researchers to investigate fully and in more detail each field for the status of SOM, available moisture and other soil properties in Alberta soils for precision farming in the near future. One hundred thirty one (131) Alberta soils with various levels (low 2-6%, medium 6-10%, and high >10%) of organic matter content and most of dry land soils, including some irrigated soils from Southern Alberta, under various management practices were collected throughout Northern, Central and Southern Alberta. Two depths (0- 15 cm and 15-30 cm) of soils from Northern Alberta were also collected. These air-dried soil samples were ground through 2 mm sieve and scanned using Foss NIR System 6500 with transport module and natural product cell. With particle size above 150 microns only, the “Ludox” method (Meijboom, Hassink and van Noorwijk, Soil Biol. Biochem.27: 1109-1111, 1995) which uses stable silica, was used to fractionate SOM into light, medium and heavy fractions with densities of <1.13, 1.13-1.37 and >1.37 respectively, The SOM fraction with the particle size below 150 microns was discarded because practically, this fraction with very fine particles can't be further separated by wet sieving based on density. Total organic matter content, mechanical texture, ash after 375$^{\circ}C$, and dry matter (DM) were also determined by “standard” soil analysis methods. The NIRS regression equations were developed using Infra-Soft-International (ISI) software, version 3.11.

  • PDF

Scenario-based Flood Disaster Simulation of the Rim Collapse of the Cheon-ji Caldera Lake, Mt. Baekdusan (시나리오에 따른 백두산 천지의 외륜산 붕괴에 의한 홍수재해 모의)

  • Lee, Khil-Ha;Kim, Sang-Hyun;Choi, Eun-Kyeong;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.501-510
    • /
    • 2014
  • Volcanic eruptions alone may lead to serious natural disasters, but the associated release of water from a caldera lake may be equally damaging. There is both historical and geological evidence of the past eruptions of Mt. Baekdusan, and the volcano, which has not erupted for over 100 years, has recently shown signs of reawakening. Action is required if we are to limit the social, political, cultural, and economic damage of any future eruption. This study aims to identify the area that would be inundated following a volcanic flood from the Cheon-Ji caldera lake that lies within Mt. Baekdusan. A scenario-based numerical analysis was performed to generate a flood hydrograph, and the parameters required were selected following a consideration of historical records from other volcanoes. The amount of water at the outer rim as a function of time was used as an upper boundary condition for the downstream routing process for a period of 10 days. Data from the USGS were used to generate a DEM with a resolution of 100 m, and remotely sensed satellite data from the moderate-resolution imaging spectroradiometer (MODIS) were used to show land cover and use. The simulation was generated using the software FLO-2D and was superposed on the remotely sensed map. The results show that the inundation area would cover about 80% of the urban area near Erdaobaihezhen assuming a 10 m/hr collapse rate, and 98% of the area would be flooded assuming a 100 m/hr collapse rate.