• Title/Summary/Keyword: Relaxation Coefficient

Search Result 123, Processing Time 0.023 seconds

Evaluation on Clamping Force of High Strength Bolts By Coating Parameters of Faying Surfaces (고력볼트 접합부표면의 방식도장변수에 따른 체결력 평가)

  • Nah, Hwan Seon;Lee, Hyeon Ju
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.48-55
    • /
    • 2012
  • Clamping force of a high strength bolt is reduced by a certain period of time after the initial set-up. In case of special treatments on faying surfaces such as protective coating, clamping force is relaxed more severely. Tests for slip critical joints subject to various faying surface parameters were conducted. Five different surface treatments were tested including mill scale surface, blast surface, rust surface and coated surfaces. Each specimen was composed of F10T M20 of high strength bolts and steel plates. Based on the result of slip coefficient test, blast treatment surface showed 0.59, rust treatment surface showed 0.54 and inorganic zinc treatment surface exhibited 0.44. Clean mill treatment surface and red lead paint treatment surface were 0.23, 0.21 respectively. It is identified that the slip coefficient in Korean structural design guide should be determined for various surface conditions. Subsequently from long term relaxation test of ASTM A 490 high strength bolts, relaxation of no-coated surfaces such as blast, clean mill, rust treatment, the loss of initial clamping load was 10.5%, 13.6% and 7.9% for 1,000 hours, while the loss of initial clamping force was reached as 15.0%, 18.7% more than the required redundancy 10% in case of inorganic zinc and red lead painted treatment. It is required that the limit of relaxation on coated faying surface should be established separately for various surfaces.

Electrohydrodynamic (EHD) Enhancement of Boiling Heat Transfer of R113+WT4% Ethanol

  • Oh Si-Doek;Kwak Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.681-691
    • /
    • 2006
  • Nucleate boiling heat transfer for refrigerants, R113, and R113+wt4% ethanol mixture, an azeotropic mixture under electric field was investigated experimentally in a single-tube shell/ tube heat exchanger. A special electrode configuration which provides a more uniform electric field that produces more higher voltage limit against the dielectric breakdown was used in this study. Experimental study has revealed that the electrical charge relaxation time is an important parameter for the boiling heat transfer enhancement under electric field. Up to 1210% enhancement of boiling heat transfer was obtained for R113+wt4% ethanol mixture which has the electrical charge relaxation time of 0.0053 sec whereas only 280% enhancement obtained for R113 which has relaxation time of 0.97 sec. With artificially machined boiling surface, more enhancement in the heat transfer coefficient in the azeotropic mixture was obtained.

A Study on the Friction and Anti-abrasion Properties of Rubber Blends for Shoes Outsole (신발 밑창용 고무 블렌드물의 마찰 및 내마모 특성에 대한 연구)

  • Pyo, Kyung-Duk;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.324-328
    • /
    • 2011
  • Blends were prepared by mixing BR, SBR and NBR to CIIR, which is used for outsole, at various mixing ratio, and effect of the mixing ratio on abrasion resistance and coefficient of friction was analyzed. CIIR interferes the crystalline formation of BR in BR/CIIR blends and this could be one of the factors that rapidly decreases abrasion resistance of BR/CIIR blends. $Tan{\delta}$ peak area of CIIR/BR blends decreased as the amount of BR present in the blends increased, and similarly, the coefficient of friction tended to decrease. Stress relaxation rate and rebound resilience of CIIR/BR blends decreased with increasing BR content, and it was presumed that their rebound resilience was affected by stress relaxation rate.

The Properties of Uniform Probabilistic Relaxation System

  • Lim, Gi Y.;M.N. Fu, Alan;Hong, Yan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.413-416
    • /
    • 1998
  • In this paper we first show that uniform PR systems and half independent PR systems have same dynamics, and then an important property of this two kinds of systems is derived. The most important property of uniform PR systems is that they have the ability of classifying m-dimensional problabilistic vector into in classes. The significance of studying the dynamics of uniform PR systems are tried from the beginning with a uniform PR system.

  • PDF

Computational Simulations of Thermoelectric Transport Properties

  • Ryu, Byungki;Oh, Min-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.273-281
    • /
    • 2016
  • This review examines computational simulations of thermoelectric properties, such as electrical conductivity, Seebeck coefficient, and thermal conductivity. With increasing computing power and the development of several efficient simulation codes for electronic structure and transport properties calculations, we can evaluate all the thermoelectric properties within the first-principles calculations with the relaxation time approximation. This review presents the basic principles of electrical and thermal transport equations and how they evaluate properties from the first-principles calculations. As a model case, this review presents results on $Bi_2Te_3$ and Si. Even though there is still an unsolved parameter such as the relaxation time, the effectiveness of the computational simulations on the transport properties will provide much help to experimental scientist researching novel thermoelectric materials.

An Efficient Learning Rule of Simple PR systems

  • Alan M. N. Fu;Hong Yan;Lim, Gi Y .
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.731-739
    • /
    • 1998
  • The probabilistic relaxation(PR) scheme based on the conditional probability and probability space partition has the important property that when its compatibility coefficient matrix (CCM) has uniform components it can classify m-dimensional probabilistic distribution vectors into different classes. When consistency or inconsistency measures have been defined, the properties of PRs are completely determined by the compatibility coefficients among labels of labeled objects and influence weight among labeled objects. In this paper we study the properties of PR in which both compatibility coefficients and influence weights are uniform, and then a learning rule for such PR system is derived. Experiments have been performed to verify the effectiveness of the learning rule.

  • PDF

Ultrasonic Velocity and Absorption Measurements for poly (sodium 4-styrenesulfonate) and Water Solutions (Poly (sodium 4-styrenesulfonate)/ 물 이성분용액의 초음파 음속 및 흡수계수측정)

  • 배종림
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.497-502
    • /
    • 2004
  • Both ultrasonic velocity at 3 MHz and absorption coefficient in the frequency range of 0.2-2 MHz were measured for poly (sodium 4-styrenesulfonate) aqueous solution over the concentration range of 5 to 25 % by weight. Pulse echo overlap method was employed to measure the ultrasonic velocity over the temperature range of 10-90 ℃ and the high-a ultrasonic resonator method was used for the absorption coefficient measurement at 20 ℃. The velocity exhibited a maximum value at approximately 55. 59, 63. 67, and 71 ℃ in 25, 20. 15, 10. and 5 wt% solutions, respectively. The velocity increased with poly (sodium 4-styrenesulfonate) concentration at a given temperature. The concentrations dependences of the relaxation frequency and amplitude showed that the relaxation around 200 kHz is related to the structural fluctuations of polymer molecules, such as the segmental motions of the polymer chains and that around 1 MHz resulted from the proton transfer reaction of the oxygen sites of SO₃. Both the absorption and the shear viscosity increase with the Polymer concentration. but decrease with temperature.

Ultrasonic Velocity and Absorption Measurements for Polyacrylamide and Water Solutions

  • Bae, Jong-Rim;Kim, Jeong-Koo;Yi, Meyung-Ha
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.155-160
    • /
    • 2003
  • Both ultrasonic velocity at 3 MHz and absorption coefficient for the frequency range of 0.2-2 MHz were measured in an aqueous solution of polyacrylamide for the concentration range of 0.5% to 2.5% by weight. Pulse echo overlap method was taken for measuring the ultrasonic velocity over the temperature range of 10-90℃ and the high-Q ultrasonic resonator method was used for the absorption coefficient at 30℃. The velocity exhibited a maximum value at approximately 70℃, 71℃, 72℃, 73℃ and 74℃ in 2.5%, 2.0%, 1.5%, 1.0%, and 0.5% solutions, respectively. The velocity increased with the concentration at a given temperature. The ultrasonic absorption (a/f²) at a given temperature increased linearly with the concentration for the concentration below 1.5%, but suddenly increased for the concentration above 1.5% concentration. The value of a/f² at 1MHz was entirely due to the classical Stoke's viscous effect. The ultrasonic relaxation in polyacrylamide aqueous solutions, which may be the result of structural fluctuations of polymer molecules such as the segmental motion of the polymer chains, was observed, and at 2.5%, the value of a/f² was found to suddenly increase as frequency decreased.

Load Relaxation and Creep Transition Behavior of a Spray Cast Hypereutectic Al-Si Based Alloy (분무 주조 과공정 Al-Si계 합금의 응력이완 및 Creep 천이 거동)

  • Kim M. S.;Bang W.;Park W. J.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.176-179
    • /
    • 2005
  • Spray casting of hypereutectic Al-Si based alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. Hypereutectic Al-Si based alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, low coefficient of thermal expansion, high thermal stability, and good creep resistance. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. High temperature deformation behavior of the hypereutectic Al-Si based alloy has been investigated by applying the internal variable theory proposed by Chang et al. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test.

  • PDF

Changes of Flame Retardant and Physical Properties of Cotton Knitted Fabrics after Flame Resistant Treatment (면편성물의 방염처리에 의한 방염성과 물성변화)

  • Jee, Ju-Won;Song, Kyung-Geun
    • Fashion & Textile Research Journal
    • /
    • v.5 no.3
    • /
    • pp.273-282
    • /
    • 2003
  • Effect of fixation methods and relaxation treatment on the flame retardant(FR) and physical properties of MDPP/HMM treated cotton weft-knitted fabrics were studied. Combination of four different fixation methods - relaxation, swelling agent treatment, pad dry cure fixation, and wet fixation - were applied to flame retardant finish of cotton weft-knitted fabric with MDPP/HMM. As the results, 1. Swelling agent and wet fixation method helps FR agent penetrate the fiber efficiently. Interlock showed relatively higher values of LOI than single jersey. 2. Interlock showed relatively higher values of bending rigidity(B), shear rigidity(G) and coefficient of friction(MIU) than those of single jersey before and after flame resistant treatment. 3. An increase in internal volume of cotton fiber by relaxation treatment increased the bending rigidity(B), shear rigidity(G) and compressional energy(WC). 4. The cotton weft-knitted fabric treated wet fixation, which crossliked FR agent efficiently, showed higher bending rigidity, shear rigidity(G) and lower compressional energy(WC). Retention of swelling ability of cotton weft-knitted fabrics treated with MDPP/HMM, which increased the internal volume of cotton weft-knitted fabric, showed lower bending rigidity.