References
-
K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, "Cubic
$AgPb_mSbTe_{2+m}$ : Bulk Thermoelectric Materials with High Figure of Merit," Science, 303 [5659] 818-21 (2004). https://doi.org/10.1126/science.1092963 - G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nature Mater., 7 [2] 105-14 (2008). https://doi.org/10.1038/nmat2090
- J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. Snyder, "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States," Science, 321 [5888] 554-57 (2008). https://doi.org/10.1126/science.1159725
- Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, "Convergence of Electronic Bands for High Performance Bulk Thermoelectrics," Nature, 473 [7345] 66-9 (2011). https://doi.org/10.1038/nature09996
-
P. F. P. Poudeu, J. D. Angelo, A. D. Downey, J. L. Short, T. P. Hogan, M. G. Kanatzidis, "High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type
$Na_{1-x}Pb_mSb_{y-}Te_{m+2}$ ," Angew. Chem. Int. Ed., 45 [23] 3835-39 (2006). https://doi.org/10.1002/anie.200600865 - G. K. H. Madsen and D. J. Singh, "BoltzTraP. A Code for Calculating Band-Structure Dependent Quantities," Comput. Phys. Commun., 175 [1] 67-71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007
- P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria, 2001.
- G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse and J. Furthmuller, "Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos1, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari1, and R. M. Wentzcovitch, "QUANTUM ESPRESSO: a Modular and Open-Source Software Project for Quantum Simulations of Materials," J. Phys.: Condens. Matter, 21 [39] 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
- G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, "BoltzWann: A code for the Evaluation of Thermoelectric and Electronic Transport Properties with a Maximally-Localized Wannier Functions Basis", Comp. Phys. Comm., 185 [1] 422-29 (2014). https://doi.org/10.1016/j.cpc.2013.09.015
- G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer-Verlag, Heidelberg, 2001.
- M. W. Oh, D. M. Wee, S. D. Park, B. S. Kim, and H. W. Lee, "Electronic Structure and Thermoelectric Transport Properties of AgTlTe: First-Principles Calculations," Phys. Rev. B, 77 [16] 165119 (2008). https://doi.org/10.1103/PhysRevB.77.165119
- G. Jeffrey and T. S. Ursell, "Thermoelectric Efficiency and Compatibility," Phys. Rev. Lett., 91 [14] 148301 (2003). https://doi.org/10.1103/PhysRevLett.91.148301
-
S. J. Youn and A. J. Freeman, "First-Principles Electronic Structure and its Relation to Thermoelectric Properties of
$Bi_2Te_3$ ," Phys. Rev. B, 63 [8] 851121 (2001). -
P. Larson, S. D. Mahanti, and M. G. Kanatzdis, "Electronic Structure and Transport of
$Bi_2Te_3$ and$BaBiTe_3$ ," Phys. Rev. B, 61 [12] 8162 (2000). https://doi.org/10.1103/PhysRevB.61.8162 - T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, "Transport Coefficients from First-Principles Calculations," Phys. Rev. B, 68 [12] 125210 (2003). https://doi.org/10.1103/PhysRevB.68.125210
- B.-L. Huang and M. Kaviany, "Ab Initio and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride," Phys. Rev. B, 77 [12] 125209 (2008). https://doi.org/10.1103/PhysRevB.77.125209
- S. Lee and P. von Allmen, "Tight-Binding Modeling of Thermoelectric Properties of Bismuth Telluride," Appl. Phys. Lett., 88 [2] 022107 (2006). https://doi.org/10.1063/1.2162863
- S. K. Mishra, S. Satpathy, and O. Jepsen, "Electronic Structure and Thermoelectric Properties of Bismuth Telluride and Bismuth Selenide," J. Phys. Cond. Matter., 9 [2] 461 (1997). https://doi.org/10.1088/0953-8984/9/2/014
-
P. Larson, and W. R. L. Lambrecht, "Electronic Structure and Magnetism in
$Bi_2Te_3$ ,$Bi_2Se_3$ , and$Sb_2Te_3$ Doped with Transition Metals (Ti-Zn)," Phys. Rev. B, 78 [19] 195207 (2008). https://doi.org/10.1103/PhysRevB.78.195207 -
P. Larson, "Effect of
$p_{1/2}$ Corrections in the Electronic Structure of$Bi_2Te_3$ Compounds," Phys. Rev. B, 68 [15] 1551211 (2003). -
B. Yu. Yavorsky, N. F. Hinsche, I. Mertig, and P. Zahn, "Electronic Structure and Transport Anisotropy of
$Bi_2Te_3$ and$Sb_2Te_3$ ," Phys. Rev. B, 84 [16] 165208 (2011). https://doi.org/10.1103/PhysRevB.84.165208 -
N. F. Hinsche, B. Yu. Yavorsky, I. Mertig, and P. Zahn, "Influence of Strain on Anisotropic Thermoelectric Transport in
$Bi_2Te_3$ and$Sb_2Te_3$ ," Phys. Rev. B, 84 [16] 165214 (2011). https://doi.org/10.1103/PhysRevB.84.165214 -
M. Kim, A. J. Freeman, and C. B. Geller, "Screened Exchange LDA Determination of the Ground and Excited State Properties of Thermoelectrics:
$Bi_2Te_3$ ," Phys. Rev. B, 72 [3] 035205 (2005). https://doi.org/10.1103/PhysRevB.72.035205 - P. Pecheur and G. Toussaint, "Electronic Structure and Bonding in Bismuth Telluride," Phys. Lett. A, 135 [3] 223-26 (1989). https://doi.org/10.1016/0375-9601(89)90267-3
-
P. Pecheur and G. Toussaint, "Tight-binding Studies of Crystal Stability and Defects in
$Bi_2Te_3$ ," J. Phys. Chem. Solids., 55 [4] 327-38 (1994). https://doi.org/10.1016/0022-3697(94)90229-1 -
B. Ryu, B. S. Kim, J. E. Lee, S. J. Joo, B. K. Min, H. W. Lee, S. D. Park, and M. W. Oh, "Prediction of the Band Structures of
$Bi_2Te_3$ -Related Binary and Sb/Se-Doped Ternary Thermoelectric Materials," J. Kor. Phys. Soc., 68 [1] 115-20 (2016). https://doi.org/10.3938/jkps.68.115 -
M. W. Oh, B. Ryu, J. E. Lee, S. J. Joo, B. S. Kim, S. D. Park, B. K. Min, and H. W. Lee, "Electronic Structure and Seebeck Coefficients of
$Bi_2Te_3$ ,$Sb_2Te_3$ , and$(Bi_{0.25}Te_{0.75})_2Te_3$ : A First-Principles Calculation Study," J. Nanoelec. Optoelec., 10 [3] 391-96 (2015). https://doi.org/10.1166/jno.2015.1756 -
S. Nakajima, "The Crystal Structure of
$Bi_2Te_{3-x}Se_x$ ," J. Phys. Chem. Solids., 24 [3] 479 (1963). https://doi.org/10.1016/0022-3697(63)90207-5 -
M. W. Oh, J. H. Son, B. S. Kim, S. D. Park, B. K. Min, and H. W. Lee, "Antisite Defects in n-type
$Bi_2(Te,\;Se)_3$ : Experimental and Theoretical Studies," J. Appl. Phys., 115 [13] 133706 (2014). https://doi.org/10.1063/1.4870818 - J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
-
G. A. Thomas, D. H. Rapkine, R. B. Van Dover, L. F. Mattheiss, W. A. Sunder, L. F. Schneemeyer, and J. V. Waszczak, "Large Electronic-Density Increase on Cooling a Layered Metal: Doped
$Bi_2Te_3$ ," Phys. Rev. B., 46 [3] 1553 (1992). https://doi.org/10.1103/PhysRevB.46.1553 -
T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and G. D. Mahan, "Thermoelectric Properties of
$Sb_2Te_3$ Under Pressure and Uniaxial Stress," Phys. Rev. B, 68 [8] 085201 (2003). https://doi.org/10.1103/PhysRevB.68.085201 - H. Scherrer and S. Scherrer, "Bismuth Telluride, Antimony Telluride, and Their Solid Solutions, pp. 211-238 in CRC Handbook of Thermoelectrics. Ed. by D. M. Rowe, CRC Press, Boca Raton, 1995.
- H. J. Goldsmid, "The Electrical Conductivity and Thermoelectric Power of Bismuth Telluride," Proc. Phys. Soc., 71 [4] 633 (1958). https://doi.org/10.1088/0370-1328/71/4/312
- Y. Kang, S. H. Jeon, Y. W. Son, Y. S. Lee, M. Ryu, S. Lee, and S. Han, "Microscopic Origin of Universal Quasilinear Band Structures of Transparent Conducting Oxides," Phys. Rev. Lett., 108 196404 (2012). https://doi.org/10.1103/PhysRevLett.108.196404
- J. M. Ziman, Electrons and Phonons; pp. 288-333, Oxford University Press, Oxford, 1979.
-
A. Bid, A. Bora, and A. K. Raychaudhuri, "Temperature Dependence of the Resistance of Metallic Nanowires of Diameter
${\geq}15nm$ : Applicability of Bloch-Gruneisen Theorem," Phys. Rev. B, 74 [3] 035426 (2006). https://doi.org/10.1103/PhysRevB.74.035426 - J. Y. Kim, M. W. Oh, S. Lee, Y. C. Cho, J. H. Yoon, G. W. Lee, C. R. Cho, C. H. Park, and S. Y. Jeong, "Abnormal Drop in Electrical Resistivity with Impurity Doping of Single-Crystal Ag," Sci. Rep., 4 5450 (2014).
-
P. B. Allen, W. E. Pickett, and H. Krakauer, "Band-Theory Analysis of Anisotropic Transport in
$La_2CuO_4$ -Based Superconductors," Phys. Rev. B, 36 [7] 3926-29 (1987). - R. J. Mehta, Y. Zhang, H. Zhu, D. S. Parker, M. Belley, D. J. Singh, R. Ramprasad, T. Borca-Tasciuc, and G. Ramanath, "Seebeck and Figure of Merit Enhancement in Nanostructured Antimony Telluride by Antisite Defect Suppression through Sulfur Doping," Nano Lett., 12 [9] 4523-29 (2012). https://doi.org/10.1021/nl301639t
-
P. B. Allen, "Empirical Electron-Phonon
$\lambda$ Values from Resistivity of Cubic Metallic Elements," Phys. Rev. B, 36 [5] 2920-23 (1987). https://doi.org/10.1103/PhysRevB.36.2920 - P. B. Allen, T. P. Beaulac, F. S. Khan, W. H. Butler, F. J. Pinski, and J. C. Swihart, "DC Transport in Metals," Phys. Rev. B, 34 [6] 4331-33 (1986). https://doi.org/10.1103/PhysRevB.34.4331
- S. Y. Savrasov and D. Y. Savrasov, "Electron-Phonon Interactions and Related Physical Properties of Metals from Linear-Response Theory," Phys. Rev. B, 54 [23] 16487-501 (1996). https://doi.org/10.1103/PhysRevB.54.16487
- G. P. Srivastava, Physics of Phonons; pp. 122-174, CRC Press, Boca Raton, 1990.
- P. Giannozzi, S. De Gironcoli, P. Pavone, and S. Baroni, "Ab initio Calculation of Phonon Dispersions in Semiconductors," Phys. Rev. B, 43 [9] 7231 (1991). https://doi.org/10.1103/PhysRevB.43.7231
- G. Deinzer, G. Birner, and D. Strauch, "Ab initio Calculation of the Linewidth of Various Phonon Modes in Germanium and Silicon," Phys. Rev. B, 67 [14] 144304 (2003). https://doi.org/10.1103/PhysRevB.67.144304
- D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D.A. Stewart, "Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles," Appl. Phys. Lett., 91 [23] 231922 (2007). https://doi.org/10.1063/1.2822891
- K. Esfarjani, H. T. Stokes, "Method to Extract Anharmonic Force Constants from First Principles Calculations," Phys. Rev. B, 77 [14] 144112 (2008). https://doi.org/10.1103/PhysRevB.77.144112
- X. Tang and J. Dong, "Pressure Dependence of Harmonic and Anharmonic Lattice Dynamics in MgO: a First-Principles Calculation and Implications for Lattice Thermal Conductivity," Phys. Earth Planet. Inter., 174 [1] 33 (2009). https://doi.org/10.1016/j.pepi.2008.10.003
- X. Tang and J. Dong, "Lattice Thermal Conductivity of MgO at Conditions of Earth's Interior," Proc. Natl. Acad. Sci. USA, 107 [10] 4539-43 (2010). https://doi.org/10.1073/pnas.0907194107
- L. Chaput, A. Togo, I. Tanaka, and G. Hug, "Phonon-Phonon Interactions in Transition Metals," Phys. Rev. B, 84 [9] 094302 (2011). https://doi.org/10.1103/PhysRevB.84.094302
- A. Togo, L. Chaput, and I. Tanaka, "Distributions of Phonon Lifetimes in Brillouin Zones," Phys. Rev. B, 91 [9] 094306 (2015). https://doi.org/10.1103/PhysRevB.91.094306
- A. Katre, A. Togo, I. Tanaka, and G. K. H. Madsen, "First-Principles Study of Thermal Conductivity Cross-over in Nanostructured Zinc-Chalcogenides," J. Appl. Phys., 117 [4] 045102 (2015). https://doi.org/10.1063/1.4906461
- A. Togo and I. Tanaka, "First Principles Phonon Calculations in Materials Science," Scr. Mater., 108 1-5 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021
- Webpage of phono3py, http://atztogo.github.io/phono3py. Accessed on 11/04/2016.
- W. Li, J. Carrete, N. A. Katcho, and N. Mingo, "ShengBTE: A Solver for the Boltzmann Transport Equation for Phonons," Comput. Phys. Commun., 185 [6] 1747 (2014). https://doi.org/10.1016/j.cpc.2014.02.015
-
O. Hellman and D. A. Borido, "Phonon Thermal Transport in
$Bi_2Te_3$ from First Principles," Phys. Rev. B, 90 [13] 134309 (2014). https://doi.org/10.1103/PhysRevB.90.134309 - K. Esfarjani, G. Chen, and H. T. Stokes, "Heat Transport in Silicon from First-Principles Calculations," Phys. Rev. B, 84 [8] 085204 (2011). https://doi.org/10.1103/PhysRevB.84.085204
- Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, "On the Importance of Optical Phonons to Thermal Conductivity in Nanostructures," Appl. Phys. Lett., 99 [5] 053122 (2011). https://doi.org/10.1063/1.3615709
- B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, "First-Principles Simulation of Electron Mean-Free-Path Spectra and Thermoelectric Properties in Silicon," EPL(Europhysics Letters), 109 [5] 57006 (2015). https://doi.org/10.1209/0295-5075/109/57006
-
Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, "Phonon Conduction in PbSe, PbTe,
$PbSe_{1-x}Te_x$ from First-Principles Calculations," Phys. Rev. B, 85 [18] 184303 (2012). https://doi.org/10.1103/PhysRevB.85.184303 - J. M. Seklton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, "Thermal Physics of the Lead Chalcogenides PbS, PbSe, and PbTe from First Principles," Phys. Rev. B, 89 [20] 205203 (2014). https://doi.org/10.1103/PhysRevB.89.205203
- G. K. H. Madsen, "Automated Search for New Thermoelectric Materials: The case of LiZnSb," J. Amer. Chem. Soc., 128 [37] 12140-46 (2006). https://doi.org/10.1021/ja062526a
-
P. Gorai, P. Parilla, E. S. Toberer, and Vladan Stevanovic, "Computational Exploration of the Binary
$A_1B_1$ Chemical Space for Thermoelectric Performance," Chem. Mater., 27 [18] 6213-21 (2015). https://doi.org/10.1021/acs.chemmater.5b01179
Cited by
- Hybrid-density functional theory study on the band structures of tetradymite-Bi2Te3, Sb2Te3, Bi2Se3, and Sb2Se3 thermoelectric materials vol.69, pp.11, 2016, https://doi.org/10.3938/jkps.69.1683
- Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures vol.54, pp.2, 2017, https://doi.org/10.4191/kcers.2017.54.2.10
- Thermoelectric Properties of Cu-doped Bi0.4Sb1.6Te3 Prepared by Hot Extrusion pp.1543-186X, 2017, https://doi.org/10.1007/s11664-017-5840-y
- Work function of bismuth telluride: First-principles approach vol.72, pp.1, 2018, https://doi.org/10.3938/jkps.72.122
- Control of Carrier Concentration by Ag Doping in N-Type Bi2Te3 Based Compounds vol.8, pp.5, 2018, https://doi.org/10.3390/app8050735
- vol.6, pp.5, 2019, https://doi.org/10.1088/2053-1591/ab0346
- Bi2Te3 single crystals with high room-temperature thermoelectric performance enhanced by manipulating point defects based on first-principles calculation vol.9, pp.25, 2019, https://doi.org/10.1039/c9ra01738k
- Counterintuitive example on relation between ZT and thermoelectric efficiency vol.116, pp.19, 2020, https://doi.org/10.1063/5.0003749
- Dimension reduction of thermoelectric properties using barycentric polynomial interpolation at Chebyshev nodes vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-70320-7
-
Thermomagnetic properties of
$ \mathrm{Bi}_{2}\mathrm{Te}_{3}$ single crystal in the temperature range from 55 K to 380 K vol.5, pp.1, 2016, https://doi.org/10.1103/physrevmaterials.5.015403 - Understanding the origin of semiconducting ferromagnetic character along with the high figure of merit in Cs2NaMCl6 (M = Cr, Fe) double perovskites vol.519, pp.None, 2021, https://doi.org/10.1016/j.jmmm.2020.167431
- Effects of topological band structure on thermoelectric transport of bismuthene vol.104, pp.20, 2016, https://doi.org/10.1103/physrevb.104.205105
- Theoretical study of physical properties of Ba3B(Nb,Ta)2O9 (B = Mg, Ca, Sr, Cd, Hg, Zn, Fe, Mn, Ni, Co) perovskites vol.29, pp.None, 2016, https://doi.org/10.1016/j.cocom.2021.e00595