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Abstract

In this paper we first show that uniform PR systems and half independent PR systems have same
dynamics, and then an tmportant property of this two kinds of systems is derived. The most important
property of uniform PR systems is that they have the obility of classifying m-dimensional probabilistic
vectors into m classes. The significance of studying the dynamics of uniform PR systems lies in the
fact that many learning rules for PR systems are tried from the beginning with a uniform PR system.
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1 Introduction

The relaxation labeling technique was first proposed by Rosenfeld et al. [1] to deal with ambiguity and
noise in vision systems. Probabilistic relaxation (PR) methods have been successfully applied to many
image processing tasks, such as scene labeling, pixel labeling, shape matching, line and curve enhancement,
handwritten character recognition, breaking substitution ciphers, optical flow - template matching and
image segmentation [2-7]. Efforts have also been made towards the understanding of the properties of the
method from mathematical analysis [8-11]. In this paper, we study the dynamics of a uniform PR system,
i.e. a special case of the PR systems in which both the influence coefficient matrix and the compatibility
coefficient matrix have uniform elements.

The paper is organized as follows. In Section 2, the dynamics of uniform PR systems is derived.

Summary is given in Section 3.
2 Uniform PR Systems

The PR system considered in this paper is one given in [11], in which the consistency or inconsistency

measures between initial certainty measures and compatibility coeflicient matrix (CCM) are defined exactly
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based on Bayes’ formula and a probability space partition. The PR systems in [11] is given by the following
updating equation:
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where n denote the total number of objects to be labelled, pgt) (A) is the Ath component of the m-dimensional

probabilistic vector pl(-t) associated with the 7th object at the tth step of an iterative process and
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where m is the total number of labels that each labeled object can be assigned. The Ath component
pgo) (X) of pgo) is the probability that the ith object is assigned the labeling value being X initially. d;;
is the weight of the influence on the ith object label from the jth object label and satisfys: 0 < d;; <1
and 2?21 d;j =1, ¢ij(q, r) represents the compatibility measure of object ¢ having label ¢ when object j
having label r and satisfys: 0 < ¢;;(g, r) < 1 and Z;":l ¢ij(g, 7) = 1. Let D denote the influence weight
matrix of labeled objects and Cj; denote the CCM between the ith and jth objects (i,5 = 1,---,n). If
D and Cj; are uniform matrixes, i.e., the element of D, d;; = %, t,7 = 1,---,n, and the element of C,;,
cij{z, y) = %, where 7,7 = 1, --,n and z,y = 1,---,m, then the PR system is known as a uniform PR
system. For simplicity, the CCM of uniform PR systems is denoted by C' whose element is represented
by ¢(z, y) rather than ¢;;(z, y). If D is an identity matrix and CCMs are uniform, then the PR system
is referred to as a half independent PR system. What follow will show that the uniform PR systems and
half independent PR systems have identical dynamics, and then derive one of their important property.
Theorem 1 The uniform PR systems and half independent PR systems possess the same dynamics.

Proof Based on the updating equation (1) we need to show that the quantity bgk)(/\) in uniform PR
systems is the same as that in half independent PR systems. Since equations (2) and (3) we only need to
show that they have an identical certainty measure sgt)(z). In fact, it is easy to show that in both cases

we have sgt) (2) = —715 So Theorem 1 is achieved.

Theorem 2 Let pgo) be an m-dimensional probabilistic vector. If the initial feature-factor! N; = 1, and we

I'N, denotes the total number of labels X which satisfy vgo)()\) >0,i.e,N; = ZAYi(’\) where Y; =1 as vfo)()\) > 0 and
Y; = 0 otherwise.
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assume pio)(/\*) > Loie., 1/1(0)(/\*) > 0 (since SEO)()\*) = L), then
(a) pik)(/\*) converges to 1 as k increases infinitely,

(b) pi.k)()\) converges to 0, for A # A* as k increases infinitely. In other words, p; converges to the basic
unit vector Uy» with A*th component being 1.

Proof Since C'is uniform, i.e., ¢(z, y) = %, z,y = 1,---,m, we have Min{c(A, A*) : X # A*} >Max{c(A, X):

XN # A}, and therefore the condition of Theorem 3 in [11] is satisfied. Hence, based on the Theorem 3 the

conclusions (a) and (b) are true.

3 The Learning Rule

Based on the previous analyses of dynamics of uniform PR systems, we have the following learning rule to
adjust the compatibility coefficients for a m-dimensional initial probabilistic vector converging to a specific
a m-dimensional basic unit vector under the PR process.

Learning Rule

If an initial certainty support, a m-dimensional probabilistic vector p§°5 should converge to a basic unit
vector Uk under the uniform PR system, but it does not, then

(a) set c(k, k) =0;

(b) set c(j, k) = ;%, where the index j satisfies pgo)(j) = Min{pgo)(z) c2#kz=1,--- ,m};

L
m”

(¢) other components of CCM remain being
If there is another initial certainty support pl(o), 1 # 1, should converge to a basic unit vector Ugq, ¢ # k
under the uniform PR system, but it does not, then following the same procedures, i.e.,

(a’) set c(g, ¢) = 0;

(b") set cr, ¢) = 2, where the index r satisfies pgo)(r) = Min{pgo) (2): 2# ¢, z=1,---,m};

(¢) other components of CCM keep being - except c(k, k) = 0 and (g, k) = 2.

Experiments have shown that PR systems after training can classify similar initial probabilistic vectors

(i.e., similar patterns) into a same class (i.e., an identical m-dimensional basic unit vector) and different

initial probabilistic vectors into different classes.

4 Summary

In Section 2 we have shown that the uniform PR systems and half independent PR systems have same
dynamics. We have also derived their important dynamics. The important property of the two kinds of
PR systems is that they can classify m-dimensional probabilistic vectors into m classes [11]. This property

plays a central role in an application of PR systems to solve practical problems. Many learning rule for PR
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systems can be yielded from the beginning with a uniform PR system. Thus, with better understanding

of the dynamics of uniform PR systems, more effective learning rules for PR systems will be found.
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