• Title/Summary/Keyword: Relative humidity sensor

Search Result 139, Processing Time 0.021 seconds

The Electrical Characteristics of $(Ba_{0.5}\;Ca_{0.5})TiO_{3}$ Humidity-Sensitive Devices ($(Ba_{0.5}\;Ca_{0.5})TiO_{3}$ 감습소자의 전기적 특성)

  • Yuk, Jae-Ho;Lee, Duck-Chool
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.33-40
    • /
    • 1996
  • $(Ba_{0.5}\;Ca_{0.5})TiO_{3}$ humidity-sensitive devices were fabricated by a solid reaction method, and their electrical properties were investigated. The specimens exhibited good humidity sensitivity, in which the impedance changes linearly. It is shown that electrical conduction with moisture adsorption is dominated by the ions through characteristics of charging and discharing current, and electrical conductivity increases as rasing the temperature and relative humidity. It is realized that relative permittivity increases and activation energy decreases with increasing relative humidity.

  • PDF

Humidity sensing properties of carbon nitride film according to fabrication conditions (제조 조건에 따른 질화탄소막의 습도 감지 특성)

  • Lee, Sung-Pil;Kim, Jung-Hoon;Lee, Hyo-Ung;Lee, Ji-Gong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.343-349
    • /
    • 2005
  • Carbon nitride films were deposited on various substrates for humidity sensors with meshed electrode by reactive RF magnetron sputtering system. As the ratio of injected nitrogen was decreased, the sensitivity of sensor was increased. When the ratio of injected nitrogen was $50{\sim}70%$, the sample showed the best linearity. The sensor impedance changed from $95.4{\;}k{\Omega}$ to $2.1{\;}k{\Omega}$ in a relative humidity range of 5 % to 95 %. The humidity sensors based on silicon wafer revealed higher lineality and faster response than those of alumina or quartz substrates. The adsorption saturation time of the sample was about 80 sec, and its desorption time was about 90 sec.

Prototyping an embedded wireless sensor for monitoring reinforced concrete structures

  • Utepov, Yelbek;Khudaibergenov, Olzhas;Kabdush, Yerzhan;Kazkeev, Alizhan
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.95-102
    • /
    • 2019
  • Current article proposes a cheap prototype of an embedded wireless sensor to monitor concrete structures. The prototype can measure temperature and relative humidity concurrently at a controlled through smartphone time interval. It implements a maturity method to estimate in-place concrete strength, which is considered as an alternative for traditional shock impulse method and compression tests used in Kazakhstan. The prototype was tested and adequately performed in the laboratory and field conditions. Tests aimed to study the effect of internal and ambient temperature and relative humidity on the concrete strength gain. According to test results revealed that all parameters influence the strength gain to some extent. For a better understanding of how strongly parameters influence the strength as well as each other, proposed a multicolored cross-correlation matrix technique. The technique is based on the determination coefficients. It is able to show the value of significance of correlation, its positivity or negativity, as well as the degree of inter-influence of parameters. The prototype testing also recognized the inconvenience of Bluetooth control due to weakness of signal and inability to access several prototypes simultaneously. Therefore, further improvement of the prototype presume to include the replacement of Bluetooth by Narrow Band IoT standard.

Humidity Sensitivity of Hybrid Polyelectrolytes Prepared by the Sol-Gel Process

  • Lee Chil-Won;Park Hyung-Seok;Kim Jong-Gyu;Gong Myoung-Seon
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.96-101
    • /
    • 2005
  • Thin-film humidity sensors were prepared using inorganic/organic hybrid polyelectrolytes, which were prepared from the sol-gel reaction of copolymers of [2-(methacryloyloxy)ethyl]dimethylpropylammonium bromide (MEPAB), n-butyl methacrylate (BMA), and 3-(trimethoxysilyl)propyl methacrylate (TSPM) with tetraethyl ortho-silicate (TEOS). The humidity-sensitive polyelectrolytes were composed of the copolymers having the following mole ratios of MEPAB, BMA, and TSPM: 60/30/10, 55/30/15, and 50/30/20. We found that the impedance varied with the content of MEPAB or TEOS; it ranged from $10^{7} to 10^{3}\Omega$ between 20 and $95\%$ relative humidity, which is the range required for a humidity sensor operating at ambient humidity. In addition we investigated a number of characteristics of these humidity sensors, such as their hysteresis, response time, temperature dependence, frequency dependence, water durability, and long-term stability.

The humidity sensitive characteristics of $CaZrO_3$ ceramics ($CaZrO_3$ 세라믹스의 감습 특성)

  • Yuk, Jae-Ho;Kim, Yong-Woon
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.1-5
    • /
    • 2006
  • [ $CaZrO_3$ ] humidity sensors were prepared using the solid-state synthetic method and their humidity sensitive characteristics have been investigated. It was found that the impedance of the humidity sensors decreased with increasing relative humidity and the humidity sensitivity depended on the applied frequencies. The sensitivity of sensor is stable with heat treatment and a negligible hysteresis under cyclic humidity changes is shown, and the activation energy for electrical conduction is reduced with water adsorption.

Effects of Temperature and Humidity on NDIR CO2 Gas Sensor (비분산 적외선 이산화탄소 가스센서 특성의 온·습도 영향)

  • Kim, JinHo;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.179-185
    • /
    • 2017
  • This article describes the characteristics of nondispersive infrared carbon dioxide gas sensor according to the temperatures and humidifies. In this researches, a thermopile sensor that included application-specific integrated circuit (ASIC) was used and the White-cell structure was implemented as an optical waveguide. The developed sensor modules were installed in gas chamber and then the temperature of gas chamber has been increased from 283 K to 313 K with 10K temperature step. In order to analyze the effects of humidity levels, the relative humidity levels were changed from 30 to 80%R.H. with small humidifier. Then, the characteristics of sensor modules were acquired with the increment of carbon dioxide concentrations from 0 to 2,000 ppm. When the initial voltages of sensors were compared before and after humidifying the chamber at constant temperature, the decrements of the output voltages of sensors are like these: 9mV (reference infrared sensor), 41 mV (carbon dioxide sensor), 2 mV (temperature sensor). With the increment of ambient temperature, the averaged output voltage of carbon dioxide sensor was increased 19 mV, however, when the humidity level was increased, it was decreased 14mV. Based upon the experimental results, the humidity effect could be alleviated by the increment of temperature, so the effects of humidity and temperature could be only compensated by the ambient temperature itself. The estimated carbon dioxide concentrations showed 10% large errors below 200 ppm, however, the errors of the estimations of carbon dioxide concentrations were less than ${\pm}5%$ from 400 to 2,000 ppm.

Relative Humidity Transducer Proficiency Test for KOLAS Humidity Calibration Laboratories (KOLAS 교정기관 간 측정 동등성 확립을 위한 상대습도 변환기 숙련도 시험)

  • Sang-Wook Lee;Young-Suk Lee;Byung-Il Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.447-454
    • /
    • 2023
  • The Korea Laboratory Accreditation Scheme (KOLAS) operates accreditation programs for ensuring measurement traceability with the International System (SI) of Units - the highest calibration standard that measurements can be tested against. As of September 2023, there are 70 KOLAS-accredited laboratories in the Republic of Korea that specialize in humidity calibration. Among them, 32 KOLAS laboratories, along with one laboratory not affiliated with KOLAS, participated in the proficiency test (PM 2023-11) for relative humidity transducers in 2023. This proficiency test was conducted within a relative humidity range of 20-90% at a temperature of approximately 20 ℃, taking into consideration the calibration and measurement capability (CMC) of the participating laboratories. The primary objective of the proficiency test was to establish the measurement equivalence between each participating laboratory and the reference laboratory, by calculating the number of equivalence (En). When |En| was less than 1, the measurements from the participating and reference laboratory were equivalent. Out of the 33 participating laboratories, 32 successfully met this criterion and passed the proficiency test.

Theoretical Analysis and Optimization of Extrinsic Fabry-Perot Interferometer Optical-fiber Humidity-sensor Structures

  • Yin, Xiao Lei;Wang, Ning;Yu, Xiao Dan;Li, Yu Hao;Zhang, Bo;Li, Dai Lin
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.652-659
    • /
    • 2021
  • The theoretical analysis and optimization of extrinsic Fabry-Perot interferometer (EFPI) opticalfiber humidity sensors are deeply investigated. For a typical dual-cavity structure composed of an optical fiber and a humidity-sensitive membrane (HSM), the changes in refractive index (RI) and initial length are discussed for polymer materials and porous oxide materials when relative humidity (RH) increases. The typical interference spectrum is simulated at different RH using MATLAB. The spectral change caused by changing HSM RI and initial length are simulated simutineously, showing different influences on humidity response. To deeply investigate the influence on RH sensitivity, the typical response sensitivity curves for different HSM lengths and air-cavity lengths are simulated. The results show that the HSM is the vital factor. Short HSM length can improve the sensitivity, but for HSM RI and length the influences on sensitivity are opposite, because of the opposite spectral-shift trend. Deep discussion and an optimization method are provided to solve this problem. According to analysis, an opaque HSM is helpful to improve sensitivity. Furthermore, if using an opaque HSM, a short air cavity and long HSM length can improve the sensor's sensitivity These results provide deep understanding and some ideas for designing and optimizing highly sensitive EFPI fiber humidity sensors.

Humidity Sensor Using Microwave Sensor Based on Microstrip Defected Ground Structure Coated with Polyvinyl Alcohol (폴리비닐알코올로 코팅된 마이크로스트립 결함 접지 구조 기반 마이크로파 센서를 이용한 습도 센서)

  • Yeo, Junho;Kwon, Younghwan
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.627-632
    • /
    • 2020
  • In this paper, we have studied a development of a humidity sensor using a microwave sensor based on a microstrip defected ground structure coated with polyvinyl alcohol. A high-sensitivity microwave sensor, which is sensitive to the changes in the permittivity of the material under test, is designed by adding an interdigital capacitor-shaped defected ground structure to the ground plane of a microstrip line. Polyvinyl alcohol, a polymer material whose permittivity varies depending on humidity, is coated with a thin thickness on the defected ground structure of the proposed microwave sensor, and the changes in the resonance frequency and magnitude of the transmission coefficient for the microwave sensor according to humidity are measured. When relative humidity increases from 40% to 80% in 10% increments at a temperature of 25 degrees using a temperature/humidity chamber, the resonant frequency of the transmission coefficient decreases from 1.475 GHz to 1.449 GHz, and the magnitude is increased from -32.90 dB to -25.67 dB.

Vertical Aerosol Distribution and Flux Measurement in the Planetary Boundary Layer Using Drone (드론을 이용한 안면도 상공 대기경계층내의 미세먼지 연직분포 및 Flux 측정)

  • Kim, Heesang;Park, Yonghe;Kim, Wooyoung;Eun, Heeram;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.14 no.2
    • /
    • pp.35-40
    • /
    • 2018
  • Vertical particle size distribution, total particle concentration, wind velocity, temperature and humidity measurement was performed with a drone. The drone was equipped with a wind sensor, house-made optical particle count(Hy-OPC), condensation particle counter(Hy-CPC), GPS, Temperature, Relative Humidity, Pressure and communication system. Base on the wind velocity and the particle size vertical distribution measurement with drone, the particle mass flux was calculated. The vertical particle distribution showed that the particle number concentration was very strongly correlated with the relative humidity.