• Title/Summary/Keyword: Relative depth

Search Result 889, Processing Time 0.038 seconds

A Study on the Flaw Evaluation in the Straddle Mount Type Low Pressure Turbine Disc Using Phased Array Ultrasonic Technique (위상 배열 초음파 기법을 이용한 Straddle Mount형 저압 터빈 디스크 결함 평가에 관한 연구)

  • Yang, Seung-Han;Yoon, Byung-Sik;Kim, Yong-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.231-238
    • /
    • 2006
  • Nondestructive examination for low pressure turbine disc in standard nuclear power plant using phased array technique was studied. For this purpose, disc mockups were made and notches were machined in the mockups. Detection and length sizing by different methods are compared. Depth of deep notches could be measured by using AATT(absolute arrival time technique) or RATT(relative arrival time technique) but shallow notches that must be detected in early stage couldn't be measured by these two methods. For this case, notch depth was estimated by using signal response angle range and preyed usefulness.

Numerical Study of Drag Forces Acting on a Submerged Square Cylinder in Steady Flow Condition (정상류 수몰 사각실린더에 작용하는 항력 특성에 관한 수치모의 연구)

  • Lee, Du Han;Kim, Young Joo;Rhee, Dong Sop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3950-3960
    • /
    • 2014
  • In this study, the drag forces on a submerged square cylinder were analyzed using a three dimensional hydrodynamic model. The numerical results were compared with the experimental results to check the reliability of the numerical simulations, and the characteristics of the drag forces with the relative depths were analyzed by analyzing the pressure acting on the cylinder surface, which are normally difficult to measure experimentally. The numerical results showed that the drag forces acting on a submerged square cylinder originate mainly from the pressure forces, and component of the shear forces decreased with increasing relative depth. The pressure coefficient distributions showed that in the case of a low relative depth, a relatively high pressure was formed in the front of a cylinder, and a relatively low pressure was formed in the rear, which gives a high drag coefficient. In a high relative depth, the pressure in the front decreased and pressure in the rear increased, which is a similar phenomenon to that normally observed in two dimensional square cylinder flow. The effect of the static pressure was analyzed and the surface elevation difference between the front and rear zone of a cylinder has a limited effect on the drag forces. Finally, the numerical results showed that the drag forces acting on a submerged square are dominated by the dynamic pressure formed by three dimensional flow and the distribution of local surface elevation.

Interaction of Binocular Disparity and Pulfrich Effect in the Perception of Rotation Direction and Depth of a Transparent Rotating Cylinder (회전방향과 깊이 지각에서의 양안부등과 Pulfrich 효과의 상호작용)

  • Li Hyung-Chul O.
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.4
    • /
    • pp.243-254
    • /
    • 2005
  • Pulfrich effect implies the possibility that motion information is processed by the system that processes depth information, and this possibility by supported by various neurophysiological studies. Although Pulfrich effect is processed by the system that processes binocular disparity, the representative depth information, there has not been a psychophysical research to determine the characteristics of the interaction between Pulfrich effect and binorular disparity using a stimulus containing the two information sources. Present research examined the characteristics of the interacation between Pulfrich effect and binocular disparity by nenuring the depth and rotation direction of a rotating cylinder comprised of random dots under two different conditions: 1) consistent rendition where the Pulfrich effect and binocular disparity depth the depth and rotation direction of the cylinder in a consistent manner 2) inconsistent rendition where they did not. , The perceived depth of the cylinder in the consistent condition was larger than that in disparity/Pulfrich effect only condition. Interestingly, the perceived rotation direction of the cylinder in the inconsistent condition was modulated by the relative strength of the disparity and the Pulfrich effect. These results imply that binocular disparity and Pulfrich effect are processed by a common neurophysiological methanism.

  • PDF

A Relative Study on the Displacement of Earth Retaining Wall by 2 and 3 Dimentional Analysis (2차원 및 3차원 해석에 의한 토류벽의 변위에 관한 비교 연구)

  • Park, Chun-Sik;Park, Hae-Chan;Kim, Jong-Hwan;Park, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.801-810
    • /
    • 2010
  • Until now, design of Earth Retaining is practiced by 2nd dimensional analysis for convenience of analysis and time saving. However, the construction field is 3rd dimension, in this study, practised the 3rd dimensional analysis which can reflect the field condition more exactly the scope of earth retaining wall, and researched about the effective and economical way of design, compared and reviewed with the results, by practising both the 2nd and 3rd dimensional analysis. existing 2nd dimension. the depth of excavation, depth of embedded and soil condition. As result, under the whole conditions, more displacement came to appear to the value as result of 3rd dimensional analysis more than the result of 2nd dimensional analysis. Accordingly, the displacement by the 2nd dimension analysis is underestimated. Moreover, results of 2nd and 3rd dimensional analysis, there is no difference at displacement, when the depth of embedded is 0.5H, 1.0H and 1.5H, but Displacement of 1.5H is smaller than 0.5H, 1.0H. That is, the bigger the depth of embedded becomes, the displacement of Earth Retaining Wall appeared smaller. The displacement of earth retaining wall according to depth of excavation appeared bigger, when the depth of excavation is increased. In the meantime, when the soil condition is different, in the 2nd dimensional analysis, the displacement appeared biggest, in case of the clay layer, but in the 3rd dimensional analysis, in the beginning of excavating, the displacement of earth retaining wall appeared bigger in case of clay layer, but as excavating is in progress, the displacement of both compound soil layer and sand layer appeared big.

  • PDF

A Sensitivity Test on the Minimum Depth of the Tide Model in the Northeast Asian Marginal Seas (동북아시아 조석 모델의 최소수심에 대한 민감도 분석)

  • Lee, Ho-Jin;Seo, Ok-Hee;Kang, Hyoun-Woo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.457-466
    • /
    • 2007
  • The effect of depth correction in the coastal sea has been investigated through a series of tide simulations in the area of $115{\sim}150^{\circ}E,\;20{\sim}52^{\circ}N$ of northwestern Pacific with $1/12^{\circ}$ resolution. Comparison of the solutions varying the minimum depth from 10m to 35 m with the 5m interval shows that the amplitude accuracies of $M_2,\;S_2,\;K_1$ tide using the minimum depth of 25 m have been improved up to 42%, 32%, 26%, respectively, comparing to those using the minimum depth of 10m. The discrepancy between model results using different minimum depth is found to be up to 20 cm for $M_2$ tidal amplitude around Cheju Islands and the positions of amphidromes are dramatically changed in the Bohai Sea. The calculated ARE(Averaged Relative Error) values have been minimized when the bottom frictional coefficient and the minimum depth is 0.0015 and 25 m, respectively.

The Ultrasonic Image Processing by Peak Value, Time Average and Depth Profile Technique in High Frequency Bandwidth (고주파대역에서 피크값, Time Average 및 Depth Profile 초음파 영상처리)

  • 이종호
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.120-127
    • /
    • 1998
  • In this paper, ultrasonic images of 25MHz bandwidth were acquired by applying peak value variation, time average and depth profile algorithm to acoustic microscopy and its performance was compared and analysed with each other. In the time average algorithm, total reflecting pulse wave from a spot on the coin was converted to digital data in time domain and average value of the converted 512 data was calculated in computer. Time average image was displayed by gray levels colour of acquired N x N matrix average data in the scanning area on the sample. This technique having smoothing effects in time domain make developed an ultrasonic image on a highly scattering area. In depth profile technique, time difference between the reference and the reflected signal was detected with minimum resolution performance of 2ns, thus we can acquired real 3 dimensional shape of the scanning area in accordance with relative magnitude. Through these experiments, peak value, time average and depth profile images were analysed and advantages of each algorithm were proposed.

  • PDF

Effects of the Bearing Capacity of Strip Footing by Underground Cavity (지하공동이 연속기초의 지지력에 미치는 영향)

  • Lee, Jun-Dae;Lee, Bong-Jik;Oh, Se-Wook;Kang, Jong-Beom
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2000
  • In this study, the bearing capacity behavior of strip footing located above a continuous cavity in sand was investigated experimentally. The model footing test was performed in a model box made by using raining method in sand. The model footing test results were compared with those obtained from theoretically proposed equations. The results of the analysis indicate that there is a critical region under the footing. For strip footing, there exists a critical depth below which the presence of the cavity has negligible influence on the footing performance. Only when the cavity is located within this region will the footing performance be significantly affected by the presence of the cavity. The size of the critical region depends on several factors such as footing shape, soil property, cavity size and cavity shape. When the cavity is located within the critical region, the bearing capacity of the footing varies with various factors, such as the size and location of the cavity and the depth of foundation. Based on the experimental study, the following conclusions were induced. 1. The ultimate bearing capacity due to the eccentricity of a underground cavity increases at the rate of the small rather than that due to the depth of a underground cavity. This indicates that the bearing capacity of a strip footing is influenced on the depth rather than the eccentricity of a underground cavity. 2. The critical $depth(D/B)_{cr}$, by underground cavity in sand soil ground that is made by the relative density($D_r$)=55%, 65%, 75%, approaches a range of about 8~10 in case of W/B=1, and about 11~13 in case of W/B=2. 3. In case of the relative density($D_r$) 75%, the most outstanding differential settlement trend is shown in the depth of 4~8cm regardless of the size of cavity, namely, when the value of D/B is 1~2. Therefore, a underground cavity influences on not only the decrease of the bearing capacity but also the differential settlement of a strip footing.

  • PDF

Fish Distribution Research Using Fishfinder at Fishery Area in the Cheongpyeong Reservoir (어군탐지기를 활용한 청평호 어업 구간의 어류 분포 연구)

  • Baek, Seung-Ho;Park, Sang-Hyeon;Song, Mi-Young;Kim, Jeong-Hui
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.384-389
    • /
    • 2021
  • This study was conducted on October 23, 2020 at the Cheongpyeong Reservoir located in Seorakmyeon, Gapyeong-gun, Gyeonggi-do, and analyzed the horizontal and vertical distribution patterns of fish based on data obtained using fishfinder. The total surface area of fishfinder survey conducted was 782,853 m2, and where the water depth (WD) ranges from 10 m to 12 m is widest which 31.7% of total surface area. As a result of the heat map analysis, fish density was highest at right bank under the Gapyeong-bridge, but there was no specific pattern in horizontal distribution of fish. As a result of vertical distribution of fish analysis, 86.6% of fishes are observed at below 6 m of the fish depth (FD, distance from water surface to fish). As a result of the relative height (RH, water depth-distance from bottom to fish ratio) analysis, there was a tendency that fishes are distributed in near surface area more as the WD increased. This tendency could have various reasons such as water temperature gradient along the water depth, and further studies are required for detailed explanation.

A Study on the Development of Analysis Model for Prediction of Relative Deformation between Cutting Tool and Workpiece (공구와 공작물의 상대적 변형량 예측을 위한 해석모델 개발에 관한 연구)

  • Lee, Mun-Jae;Hwang, Young-Kug;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.20-26
    • /
    • 2010
  • Any relative deformation between the cutting tool and the workpiece at the machining point, results directly in form and dimensional errors. The source of relative deformations between the cutting tool and the workpiece at the contact point may be due to thermal, weight, and cutting forces. This paper presents an investigation into dry and fluid machining with the objective of evaluating shape accuracy effect for the turning process of Al6061. The thermal distribution of cutting tool and cutting force was predicted using finite element method after measuring the temperature of the tool holder. To reach this goal, shape accuracy turning experiments are carried out according to cutting conditions with dry and fluid machining methods. The variable cutting conditions are cutting speed, depth of cutting and feed rate.

An Experimental Analysis for the Stability Investigation of Slope on Saemangeum Lake Dykes (새만금 방수제 축조사면의 안정성 검토를 위한 실험적 분석)

  • Jang, Dong-Gi;Kim, Ki-Nyun;Kim, Dong-Hwan;Seo, Kwan-Seok;Son, Moon-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.687-697
    • /
    • 2010
  • This study was designed to carry out studies on critical seepage velocity and critical hydraulic gradient using a piping test targeting SM and ML which are widely distributed ahead of and behind the depth of E.L(-)10m in Saemangeum area in order to examine stability of embankment built on the ground vulnerable to piping. The effects of relative densities on critical hydraulic gradient and critical velocity were also compared and analyzed using empirical formula and theoretical formula, and relative densities were set up as respectively 9%, 25%, 50%, and 75% for this experiment. As a result, for critical hydraulic gradient, most of specimens detected piping at lower values than the empirical formula of Terzaghi(1922). It is, therefore, considered that the empirical formula devised by Kalin(1977) or Hayashi(1978) is more reasonable to be conservative. It was also found that critical velocity decreased as relative density increased, and critical velocity predicted was mostly lower than the theoretical formula.

  • PDF