A Sensitivity Test on the Minimum Depth of the Tide Model in the Northeast Asian Marginal Seas

동북아시아 조석 모델의 최소수심에 대한 민감도 분석

  • Lee, Ho-Jin (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Seo, Ok-Hee (Korea Ocean Research & Development Institute) ;
  • Kang, Hyoun-Woo (Korea Ocean Research & Development Institute)
  • 이호진 (한국해양대학교 해양환경생명과학부) ;
  • 서옥희 (한국해양연구원 해양에너지.환경개선연구사업단) ;
  • 강현우 (한국해양연구원 해양에너지.환경개선연구사업단)
  • Published : 2007.10.25

Abstract

The effect of depth correction in the coastal sea has been investigated through a series of tide simulations in the area of $115{\sim}150^{\circ}E,\;20{\sim}52^{\circ}N$ of northwestern Pacific with $1/12^{\circ}$ resolution. Comparison of the solutions varying the minimum depth from 10m to 35 m with the 5m interval shows that the amplitude accuracies of $M_2,\;S_2,\;K_1$ tide using the minimum depth of 25 m have been improved up to 42%, 32%, 26%, respectively, comparing to those using the minimum depth of 10m. The discrepancy between model results using different minimum depth is found to be up to 20 cm for $M_2$ tidal amplitude around Cheju Islands and the positions of amphidromes are dramatically changed in the Bohai Sea. The calculated ARE(Averaged Relative Error) values have been minimized when the bottom frictional coefficient and the minimum depth is 0.0015 and 25 m, respectively.

북서태평양의 $115{\sim}150^{\circ}E,\;20{\sim}52^{\circ}N$ 사이의 해역을 $1/12^{\circ}$ 격자망으로 구성한 광역 조석 모델을 수립, 연안역 수심 조정이 전체 조석 모델 결과에 미치는 영향을 검토하였다. 최소 수심을 10 m에서 35 m까지 5 m 간격으로 증가시키며 계산된 모델의 정확도를 비교한 결과, $M_2,\;S_2,\;K_1$ 진폭의 정확도가 최소 수심이 25m일 경우최소 수심 10 m인 경우와 비교하여 각각 약 42%, 32%, 26% 정도 개선되는 것으로 나타났다. 제주도 주변 해역의 $M_2$ 조석 진폭은 연안역 수심 조정에 따라 약 20cm이상 차이를 나타냈으며 발해만 내에 존재하는 무조점의 위치도 크게 변화하였다. 해저마찰계수 및 최소수심에 따른 평균상대오차(ARE)를 계산해 본 결과 해저마찰계수 0.0015와 최소수심 25 m의 조합이 오차를 최소화 할 수 있는 최적 값으로 확인되었다.

Keywords

References

  1. 이종찬, 김창식, Matsumoto, K., Ooe, M., (2001). Topex/Poseidon 고도계자료를 이용한 북동 아시아 해역의 조석산정. 한국해양학회지, 6(1), 1-12
  2. 홍성진 (2000). 새만금 해역의 방조제 건설에 따른 황해조석현상변화의 수치적 연구. 석사학위논문, 성균관대학교
  3. Bowers, D.G., Rippeth, T.P. and Simpson, J.H., (1991) Tidal friction in a sea with two equal semidiurnal tidal constituents. Continental Shelf Research, 11(2), 203-209 https://doi.org/10.1016/0278-4343(91)90063-C
  4. IHO (1979). Tidal constituent bank station catalogu
  5. Kantha, L. H., (1995). Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides 1. model description and results. Journal of Geophysical Research, 100(C12), 25,283-25,308
  6. Lee, H. J., Jung, K. T., So, J. K. and Chung, J. Y., (2002). A three-dimensional mixed finite-difference Galerkin function model for the oceanic circulation in the Yellow Sea and the East China Sea in the presence of $M_2$ tide. Continental Shelf Research, 22(1), 67-91 https://doi.org/10.1016/S0278-4343(01)00068-1
  7. Lefevre, F., Provost, C. L. and Lyard, F. H., (2000). How can we improve a global ocean tidal model at a regional scale? A test on the Yellow Sea and the East China Sea. Journal of Geophysical Research, 105(C4), 8707-8725 https://doi.org/10.1029/1999JC900281
  8. Matsumoto, K., T. Takanezawa and Ooe, M., (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimetry data into hydrodynamic model: A Global Model and a Regional Model around Japan. Journal of Oceanography 55, 567-581
  9. Mellor, G. L., (1998). Users guide for a three dimensional primitive equation numerical model. 41pp
  10. Nishida, H. (1980). Improved tidal charts for the western part of the North Pacific Ocean. Report of Hydraulic Researches, 15, 55-70
  11. Odamaki, M., (1989). Co-oscillating and independent tides of the Japan Sea. Journal of the Oceanographical Society of Japan, 45, 217-232 https://doi.org/10.1007/BF02123465
  12. Ogura, S., (1933). The Tides in the Seas adjacent to Japan. Bulletin of the Hydrographic Department, 7, 1-180
  13. So, J. K., (2000). Analytical and numerical studies of the M2 tide in the Yellow Sea and the East China Sea. Ph.D. Dissertation, Seoul National University