• 제목/요약/키워드: Relative Velocity method

검색결과 332건 처리시간 0.023초

콜부르크-화이트 방정식의 수치해와 이의 적용 (Numerical Solution of Colebrook-White Equation and It's Application)

  • 김민환;송창수
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.613-618
    • /
    • 2005
  • In analysis of pipelines or pipe network we calculated the friction loss using Hazen-Williams or Manning formula approximately, or found one by friction coefficient from Moody diagram graphically. The friction coefficient is determined as a function of relative roughness and Reynolds number. But the calculated friction coefficient by Hazen-Williams or Manning formula considered roughness of pipe or velocity of flow. The friction coefficient in Darcy-Weisbach equation was obtained from the Moody diagram. This method is manual and is not exact from reading. This paper is presented numerical solution of Colebrook-White formula including variables of relative roughness and Reynolds number. The suggested subroutine program by an efficient linear iteration scheme can be applied to any pipe network system.

도플러 확산 환경에서의 안테나 다이버시티 효과에 관한 연구 (A Study on Effects of Antenna Diversity in Doppler Spread Environments)

  • 이종길
    • 한국정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.510-515
    • /
    • 2005
  • 도플러 확산은 송수신단의 이동에 따라 발생하며 송수신단의 상대적인 위치 및 이동속도에 따라 도플러 주파수 변이 정도가 다르게 나타난다 본 논문에서는 앞으로 폭 넓게 활용될 것으로 예상되는 OFDM(Orthogonal Frequency Division Multiplexing) 통신방식을 적용했을 경우를 가정하여 다양한 무선채널에서의 도플러 확산에 의한 성능 열화 현상을 안테나 다이버시티(diversity) 효과를 활용하여 어느 정도까지 개선할 수 있는지를 분석하였다. 이를 위하여 다양한 무선채널 모델을 설정하고 도플러 확산에 따른 SIR(Signal to interference) 값 및 SIR을 고려한 effective SNR을 계산하였다. 이러한 결과들을 바탕으로 도플러 확산 정도에 따른 다이버시티 효과를 구체적으로 분석하기 위하여 수신단에서의 BER 개선 정도를 고찰하였다.

진동응답에 나타난 모드의 기여도 평가에 관한 연구 (A Study on the Contribution of Each Mode in Vibration Response)

  • 정순철;이재응
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.339-345
    • /
    • 2006
  • In this paper, a physically meaningful methodology which can assess the contribution of each vibration mode to various vibration response signals (displacement, velocity, acceleration) is developed. Based on these results, the problem of quantitative assessment of the relative importance of a structural system's vibrational modes is discussed. In addition, a direct method which ran assess the relative importance of each mode from uniformly sampled experimental data is also proposed.

Differential Game Based Air Combat Maneuver Generation Using Scoring Function Matrix

  • Park, Hyunju;Lee, Byung-Yoon;Tahk, Min-Jea;Yoo, Dong-Wan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.204-213
    • /
    • 2016
  • A differential game theory based approach is used to develop an automated maneuver generation algorithm for Within Visual Range (WVR) air-to-air combat of unmanned combat aerial vehicles (UCAVs). The algorithm follows hierarchical decisionmaking structure and performs scoring function matrix calculation based on differential game theory to find the optimal maneuvers against dynamic and challenging combat situation. The score, implying how much air superiority the UCAV has, is computed from the predicted relative geometry, relative distance and velocity of two aircrafts. Security strategy is applied at the decision-making step. Additionally, a barrier function is implemented to keep the airplanes above the altitude lower bound. To shorten the simulation time to make the algorithm more real-time, a moving horizon method is implemented. An F-16 pseudo 6-DOF model is used for realistic simulation. The combat maneuver generation algorithm is verified through three dimensional simulations.

센서 합성을 이용한 자율이동로봇의 주행 알고리즘 설계 (Design of Navigation Algorithm for Mobile Robot using Sensor fusion)

  • 김정훈;김영중;임묘택
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권10호
    • /
    • pp.703-713
    • /
    • 2004
  • This paper presents the new obstacle avoidance method that is composed of vision and sonar sensors, also a navigation algorithm is proposed. Sonar sensors provide poor information because the angular resolution of each sonar sensor is not exact. So they are not suitable to detect relative direction of obstacles. In addition, it is not easy to detect the obstacle by vision sensors because of an image disturbance. In This paper, the new obstacle direction measurement method that is composed of sonar sensors for exact distance information and vision sensors for abundance information. The modified splitting/merging algorithm is proposed, and it is robuster for an image disturbance than the edge detecting algorithm, and it is efficient for grouping of the obstacle. In order to verify our proposed algorithm, we compare the proposed algorithm with the edge detecting algorithm via experiments. The direction of obstacle and the relative distance are used for the inputs of the fuzzy controller. We design the angular velocity controllers for obstacle avoidance and for navigation to center in corridor, respectively. In order to verify stability and effectiveness of our proposed method, it is apply to a vision and sonar based mobile robot navigation system.

플래핑 운동 및 키놀이 운동을 하는 얇은 에어포일의 공력특성에 대한 수치 해석 (Numerical Analysis on the Aerodynamic Characteristics of Thin Airfoil with Flapping and Pitching Motion)

  • 김우진
    • 한국항공운항학회지
    • /
    • 제21권1호
    • /
    • pp.45-50
    • /
    • 2013
  • In this study, lumped-vortex element method and thin airfoil theory were used to analyze aerodynamic characteristics of airfoils with relative motion that had camber lines of NACA $44{\times}{\times}$ airfoil in 2-dimensional unsteady incompressible potential flow. Velocity disturbance due to airfoil was calculated by lumped-vortex element model and force distribution on airfoil by unsteady Bernoulli's equation. Variables in relative motion were considered the period p, the amplitude of flapping $A_f$ and pitching $A_p$, and the phase difference between flapping and pitching ${\phi}_p$ and the angle of attack ${\alpha}$. Due to movement of an airfoil, dag was induced in 2-dimensional unsteady incompressible potential flow. The numerical results show that the aerodynamic characteristics of the airfoil with flapping and pitching at the same time are illustrated. Especially the mean lift coefficient became smaller, but drag coefficient became larger.

S-ALE를 이용한 다공질 매체 거동의 유한요소해석 (Finite Element Analysis for Behavior of Porous Media Using the S-ALE Method)

  • 박대효;탁문호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.381-388
    • /
    • 2006
  • A porous medium is composed of solids, fluids, and gas which have different physical and chemical properties. In addition, these constituents have a relative velocity between each other. So far, in order to analyze porous media using finite element method, Lagrangian or Eulerian method has been used. However, the numerical analyses for porous media have a defect that the methods do not describe the movements of constituents. In this paper, numerical analysis for unsaturated porous media was performed in frame of ALE method which has advantages of Lagrangian and Eulerian. Namely, the Lagrangian description was used in solid phase, and the Eulerian description was used in fluid or gas phase in a porous medium Then the relationship between each other was controlled by the convective term in ALE method. Finally, the numerical results of ALE were compared with tile results of Lagrangian analysis.

  • PDF

Bi-arc법을 이용한 평면 캠의 정밀 가공 기술에 관한 연구 (A Study on Precision Machining Technology for Disk Cams using Bi-arc Method)

  • 신중호;권순만;조인영;김종찬;강한성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.235-236
    • /
    • 2006
  • The disk cam mechanism can produce a positive motion with relatively few components. This paper introduce a shape design of cam using the relative velocity method and a precision machining technology for using Bi-arc method. The paper gives a machining information at each point using the Bi-arc method and the analysis method of the cutting error due to the moving path of the cutter, so that we can lead to the optimum design in a disk cam mechanism.

  • PDF

하천의 경관 유지 수량의 결정 (Determination of the Minimum Instream Flows for the Landscape of Riverside)

  • 홍형순;이주헌;정상만
    • 한국조경학회지
    • /
    • 제30권6호
    • /
    • pp.17-25
    • /
    • 2003
  • The physical components of a river, such as water surface width/river width ratio, water level, and flow velocity vary according to different flowrates. Moreover, the riverside landscapes are greatly affected by the change of physical components of the stream or river. This paper provides an analysis of the influence of changing physical components of a river on the riverside landscape using a survey-based quantification method. The questionnaire was developed based on current literature, and was submitted to 326 people who each visited a representative station along the riverside.This survey was implemented three times at each representative station during periods of different flowrates. The results of this analysis and survey have Produced an understanding of the relationship between the variation of physical components and riverside landscapes. Survey results about the flow comparison are summarized as follows. Viewing riverside landscapes, most respondents are sensitive to the change of the flow velocity and prefer high water levels to low water levels. As a whole, respondents prefer abundant stream flows and moderate flow velocity in which they can perceive the flow of water. The minimum instream flows for riverside landscapes is estimated at each representative station by using a survey-based quantification method, and the estimated results of some representative stations were greater than the mean monthly flow at each station. The result of this analysis shows that establishing minimum instream flows for riverside landscapes is not only a technical problem, but also a legal problem. Therefore, in the to establish the instream flows in a river, the estimated results have to be considered as a relative standard. Regarding the survey results, respondents' satisfaction level didn't show any clear inclination according to the variation of various hydraulic properties. In determining the minimum instream flow using such an inquiry method, the structure of riverside scenery may vary according to the change of seasons or months. Therefore, to determine a consistent general inclination about the flow rate, it is necessary to have more detailed flow rates for each season or month combined with more inquiries.

규칙파 중 TLP의 유탄성응답 해석 (Hydroelastic Response Analysis of TLPs in Regular Waves)

  • 하영록;이승철;구자삼
    • 동력기계공학회지
    • /
    • 제14권2호
    • /
    • pp.48-54
    • /
    • 2010
  • An improved numerical scheme, to which the hydroelastic method is adapted, is introduced for predicting the motion and structural responses of tension leg platforms(TLPs) in regular waves. The numerical approach in this work is based on a combination of the three dimensional source distribution method and the finite element method. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural response analysis. The drag forces on the submerged slender members, which are proportional to the square of relative velocity, are included in order to estimate the responses of members with better accuracy. Comparisons with other results verify the works in this paper.