• Title/Summary/Keyword: Relative Thickness Ratio

Search Result 158, Processing Time 0.024 seconds

Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control (유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Byung-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF

Experimental Investigation on the Flow Control in Forward-Backward Extrusion of Piston-Pin for Automobile (자동차용 피스톤 핀의 전.후방압출에서 유동제어에 관한 실험적 연구)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Dong-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1366-1375
    • /
    • 2002
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. The model experiment results are in good agreement with the FE simulation ones.

A note on the Geostrophically Controlled Volume Transport of the Tgushima Current

  • Seung, Young-Ho
    • Journal of the korean society of oceanography
    • /
    • v.34 no.4
    • /
    • pp.231-235
    • /
    • 1999
  • A simple analytic model for estimating the volume transport of the Tsushima Current is considered by assuming that the transports through the connecting channels, the Korea and Tsugaru Straits, are geostrophically controled. The model gives a much simpler form of solution than that by Minato and Kimura (1980). It depends no longer on the geometry of the marginal sea and on the thickness of western boundary layer relative to the dimension of the ocean, but considers the geometry of the connecting channels ignored by Nof (1993). The external parameters turn out to be the oceanic meridional sea level difference between the two channels, the depth of the channels and the meridional position of the marginal sea. For typical value of the depth ratio of the channels to the ocean, the model gives an estimate of the Tsushima Current transport of acceptable magnitude.

  • PDF

Comparative Numerical Analysis of Homogenized and Discrete-Micromechanics Models for Functionally Graded Materials (기능경사재를 위한 균질화와 이산화-미시역학 모델에 대한 비교 수치해석)

  • Ha, Dae-Yul;Lee, Hong-Woo;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.399-404
    • /
    • 2000
  • Functionally graded materials(FGMs) involve dual-phase graded layers in which two different constituents are mixed continuously and functionally according to a given volume fraction. For the analysis of their thermo-mechanical response, conventional homogenized methods have been widely employed in order to estimate equivalent material properties of the graded layer. However, such overall estimations are insufficient to accurately predict the local behavior. In this paper, we compare the thermo-elastic behaviors predicted by several overall material-property estimation techniques with those obtained by discrete analysis models utilizing the finite element method, for various volume fractions and loading conditions.

  • PDF

Bond-slip effect in steel-concrete composite flexural members: Part 2 - Improvement of shear stud spacing in SCP

  • Lee, WonHo;Kwak, Hyo-Gyoung;Kim, Joung Rae
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.549-557
    • /
    • 2019
  • The use of shear studs usually placed in the form of mechanical shear connectors makes it possible to adopt composite steel-concrete structures in various structures, and steel-concrete plate composite (SCP) is being seriously considered for the installation of storage tanks exposed to harsh environments. However, manufacturing of SCP must be based on the application of existing design guidelines which require very close arrangement of shear studs. This means that the direct application of current design guidelines usually produces very conservative results and close arrangement of shear studs precludes pouring concrete within exterior steel faceplates. In this light, an improved guideline to determine the stud spacing should be introduced, and this paper proposes an improved ratio of the stud spacing to the thickness of steel plate on the basis of numerous parametric studies to evaluate the relative influence of the stud spacing on the stability of the SCP.

An analytical solution for the close-contact melting with vertical convection and solid-liquid density difference (종방향대류 및 고액밀도차가 고려된 접촉융해에 대한 해석해)

  • Yu, Ho-Seon;Hong, Hui-Gi;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1165-1173
    • /
    • 1997
  • The steady state close-contact melting phenomenon occurring between a phase change material and an isothermally heated flat plate with relative motion is investigated analytically, in which the effects of vertical convection in the liquid film and solid-liquid density difference are incorporated simultaneously. Not only the scale analysis is conducted to estimate a priori qualitative dependence of system variables on characteristic parameters, but also an analytical solution to a set of simplified model equations is obtained to specify the effects under consideration. These two results are consistent with each other, in that the vertical convection affects both the solid descending velocity and the film thickness, and that the density difference alters only the solid descending velocity. While the effect of vertical convection can be characterized conveniently by a newly introduced temperature gradient factor which asymptotically approaches the unity/zero with decreasing/increasing the Stefan number, that of density difference is represented by the liquid-to-solid density ratio. It is shown that the solid descending velocity depends linearly on the density ratio, and that the ratios of solid descending velocity, film thickness and friction coefficient to the conduction solution are proportional to 3/4, 1/4 and -1/4 powers of the temperature gradient factor, respectively. Also, established is the fact that the effect of convection can be legitimately neglected in the analysis for the range of the Stefan number less than 0.1.

Effect of Season, Parity and Lactation on Reproductive Performance of Sows in a Tropical Humid Climate

  • Gourdine, J.L.;Quesnel, H.;Bidanel, J.-P.;Renaudeau, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1111-1119
    • /
    • 2006
  • The aim of this study was to analyze post-weaning reproductive performance of Large White sows in relation to season, parity and their lactation performance under tropical conditions in Guadeloupe (French West Indies, $16^{\circ}$ Lat. N, $61^{\circ}$ Long. W.). This work was based on data recorded in the experimental unit of INRA from January 1993 to December 2003. Two seasons were determined a posteriori from climatic parameters recorded continuously in a station close to the experimental unit. Mean ambient temperature was higher during the hot season than the warm season ($26^{\circ}C$ vs. $24^{\circ}C$) but relative humidity was comparable for both seasons (i.e. 87% on average). Season had a significant effect on all reproductive parameters analyzed. Primiparous sows weaned in the hot season had a higher probability of a prolonged weaning to estrus interval, WEI (odds ratio was 4.1; p<0.01) but multiparous sows were not affected. A higher probability of a prolonged weaning to conception interval, WCI (odds ratio >2.5, p<0.01) and a lower subsequent farrowing rate (-10%, p<0.01) were found for sows weaned in the hot season. A higher daily feed intake during lactation reduced the probability of a prolonged WEI (p<0.05). Body weight and average back-fat thickness at farrowing affected WEI and WCI (p<0.05), whereas body weight and average backfat thickness change in lactation did not. This study confirms the negative effects of the hot season on primiparous reproductive performance. It also indicates that lactation performance influences sow non-productive period.

A STUDY ON THE POLYMERIZATION STRESS OF COMPOSITE RESINS (복합레진의 중합수축력에 관한 연구)

  • Kim, Boo-Rang;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.331-341
    • /
    • 1992
  • The purpose of this study was to measure the polymerization contraction stress of two types of composite resins; chemical cured type(Cliarfil F II, Kuraray, Japan) and photo-cured type(Photo-Clearfil Bright, Kuraray, Japan). The stresses of composite resin by contraction measured with specially designed measuring device(Fig. 1). The stresses caused by shrinkage during hardening of specimens were measured according to the type of composite resins, thickness of specimen(0.65, 1.30 and 1.95mm), and ratio of catalyst to base in case of only chemical cured composite resin(0.5, 1.0 and 1.5). As the composite resin specimen shrank on hardening, the load cell recorded force vs time automatically on pen-recorder(Toa, Japan) with a cross-head speed 60mm/hr at 0~10 voltages up to 2 hours. The experiments were conducted in a room maintained at $23{\pm}2^{\circ}C$ and relative humidity $50{\pm}10%$. The results were as follows. 1. The contraction stress during hardening was higher in photo cured composite resin than in chemical cured composite resin. 2. The contraction stress during hardening was increased with thickness of composite resin specimen. 3. In chemical cured composite resin, the polymerization contraction stress was decreased with ratio of catalyst and base. 4. The contraction stress during polymerization was higher in early time after insertion of photo cured composite resin and chemical cured composite resin.

  • PDF

Drying and Shrinking Rate Equation of Root Vegetables (근채류의 수축 및 건조속도식)

  • Cho, Duck-Jae;Hur, Jong-Wha;Lee, Min-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.212-217
    • /
    • 1989
  • The shrinking and overall drying rate equations which can accomodate experimental date and the rate of initial drying ratio were investigated. The results obtained from hot air drying experiments of radish and sweet potatoes were as follow. The drying rate constant and the order were affected by the thickness of sample and temperature. The empirical drying rate and shrinking equations at constant drying conditions (d=4mm, $Ta=50^{\circ}C$, RH=10%, U=0.8m/s) for radish and sweet potatoes were found to $dx/dt=0.112{\times}10^{-2}\;A(1-x)^{0.43}$, A=Ao(-0.480x+1) and rates of initial drying ratio were expressed of sample thickness, relative humidity and air velocity; for radish $dx/dt=0.0648(RH)^{-0.31}\;(d)^{-0.75}\;(U)^{0.39}$ and for sweet potatoes $dx/dt=0.0547(RH)^{-0.28}\;(d)^{-0.63}\;(U)^{0.37}$

  • PDF

A Study on Development of the EM Wave Absorber for ETC System

  • Park, Soo-Hoon;Kim, Dong-Il;Song, Young-Man;Yoon, Sang-Gil
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.70-75
    • /
    • 2008
  • In this paper, the EM wave absorber was designed and fabricated for countermeasure against EMI from a ceiling of a tollgate in ETC system. We fabricated several samples in different composition ratios of MnZn-ferrite, Carbon, and CPE(Chlorinated Polyethylene). Absorption abilities were simulated in accordance with different thicknesses of the prepared absorbers and changed complex relative permittivity and permeability according to composition ratio. The optimized mixing ratio of MnZn-ferrite, Carbon, and CPE was found as 40:15:45 wt.% by experiments and simulation. Then the EM wave absorber was fabricated and tested using the simulated data. As a result, the developed EM wave absorber has the thickness of 3.3 mm and absorption ability was more than 20 dB in the case of normal incidence and more than 11 dB for the incident angle from 15 to 45 degrees at 5.8 GHz. Therefore, it was confirmed that the newly developed absorber can be used for ETC system.