• Title/Summary/Keyword: Relative Measurement

Search Result 1,636, Processing Time 0.023 seconds

Relative Navigation with Intermittent Laser-based Measurement for Spacecraft Formation Flying

  • Lee, Jongwoo;Park, Sang-Young;Kang, Dae-Eun
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권3호
    • /
    • pp.163-173
    • /
    • 2018
  • This paper presents relative navigation using intermittent laser-based measurement data for spacecraft flying formation that consist of two spacecrafts; namely, chief and deputy spacecrafts. The measurement data consists of the relative distance measured by a femtosecond laser, and the relative angles between the two spacecrafts. The filtering algorithms used for the relative navigation are the extended Kalman filter (EKF), unscented Kalman filter (UKF), and least squares recursive filter (LSRF). Numerical simulations reveal that the relative navigation performances of the EKF- and UKF-based relative navigation algorithms decrease in accuracy as the measurement outage period increases. However, the relative navigation performance of the UKF-based algorithm is 95 % more accurate than that of the EKF-based algorithm when the measurement outage period is 80 sec. Although the relative navigation performance of the LSRF-based relative navigation algorithm is 94 % and 370 % less accurate than those of the EKF- and UKF-based navigation algorithms, respectively, when the measurement outage period is 5 sec; the navigation error varies within a range of 4 %, even though the measurement outage period is increased. The results of this study can be applied to the design of a relative navigation strategy using the developed algorithms with laser-based measurements for spacecraft formation flying.

압력, 풍속 및 습구온도계의 크기가 건습구습도계를 이용한 상대습도 측정에 미치는 영향 (The Effects of Pressure, Wind Velocity, and Diameter of Wet Element on the Measurement of Relative Humidity by a Psychrometer)

  • 지대성;김승태;박찬복
    • 설비공학논문집
    • /
    • 제2권2호
    • /
    • pp.137-141
    • /
    • 1990
  • When the relative humidity is measured with an aspirated psychrometer, three factors, which affect the measurement of relative humidity, are atmospheric pressure, the size of wet element and the wind velocity. This paper investigated the effects of the above three factors, and the computer code was developed in order to enhance the accuracy of the relative humidity measurement. As results, it is found that the relative humidity decreases by 6%RH with increasing atmospheric pressure from 650 mbar to 1100 mbar. It is found that the relative humidity drops down when the size of the wet element increases, though the effect of the size of the wet element is not significant. Finally, relative humidity increases with the increasing wind velocity. The difference between the psychrometic table in the present KS and the present results is about 2%RH maximum. As a conclusion, the three factors mentioned above should be considered in order to secure accurate measurement of relative humidity.

  • PDF

Uncertainty Assessment: Relative versus Absolute Point Dose Measurement for Patient Specific Quality Assurance in EBRT

  • Mahmood, Talat;Ibrahim, Mounir;Aqeel, Muhammad
    • 한국의학물리학회지:의학물리
    • /
    • 제28권3호
    • /
    • pp.111-121
    • /
    • 2017
  • Verification of dose distribution is an essential part of ensuring the treatment planning system's (TPS) calculated dose will achieve the desired outcome in radiation therapy. Each measurement have uncertainty associated with it. It is desirable to reduce the measurement uncertainty. A best approach is to reduce the uncertainty associated with each step of the process to keep the total uncertainty under acceptable limits. Point dose patient specific quality assurance (QA) is recommended by American Association of Medical Physicists (AAPM) and European Society for Radiotherapy and Oncology (ESTRO) for all the complex radiation therapy treatment techniques. Relative and absolute point dose measurement methods are used to verify the TPS computed dose. Relative and absolute point dose measurement techniques have a number of steps to measure the point dose which includes chamber cross calibration, electrometer reading, chamber calibration coefficient, beam quality correction factor, reference conditions, influences quantities, machine stability, nominal calibration factor (for relative method) and absolute dose calibration of machine. Keeping these parameters in mind, the estimated relative percentage uncertainty associated with the absolute point dose measurement is 2.1% (k=1). On the other hand, the relative percentage uncertainty associated with the relative point dose verification method is estimated to 1.0% (k=1). To compare both point dose measurement methods, 13 head and neck (H&N) IMRT patients were selected. A point dose for each patient was measured with both methods. The average percentage difference between TPS computed dose and measured absolute relative point dose was 1.4% and 1% respectively. The results of this comparative study show that while choosing the relative or absolute point dose measurement technique, both techniques can produce similar results for H&N IMRT treatment plans. There is no statistically significant difference between both point dose verification methods based upon the t-test for comparing two means.

영동산 일라이트의 전자기적 특성 측정 (A Measurement of Electromagnetic Property of Illite found in Young-dong Area)

  • 김진철;이원희;구경완;허정
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.267-270
    • /
    • 2000
  • This paper describes measurement of relative permittivity of illite found in young-dong area. A measurement of relative permittivity of illite used to cylindrical cavity resonators with moveable cap. A concentric dielectric-rod inserted cylindrical cavity resonator and an exact field representation of travelling wave mode are introduced for measurement of relative permittivity. The exact electromagnetic fields in cylindrical cavity with concentric dielectric rod is analysed. A relative permittivity of dielectric in cavity is calculated by analyzing the characteristic equation. The characteristic equation is solved by using the ContourPlot graph of Mathematica. We know that the field representation of travelling mode is exact. As a result, relative permittivity of dielectric materials were 7.820 at sample-1 and 7.894 at sample-2.

  • PDF

Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

  • Lee, Kwangwon;Oh, Hyungjik;Park, Han-Earl;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권4호
    • /
    • pp.387-393
    • /
    • 2015
  • This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than $0.001^{\circ}$ at relative distances greater than 30 km.

Relative Measurement of Differential Electrode Impedance for Contact Monitoring in a Biopotential Amplifier

  • Yoo, Sun-K.
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.601-605
    • /
    • 2007
  • In this paper, we propose a simple and relative electrode contact monitoring method. By exploiting the power line interference, which is regarded as one of the worst noise sources for bio-potential measurement, the relative difference in electrode impedance can be measured without a current or voltage source. Substantial benefits, including no extra circuit components, no degradation of the body potential driving circuit, and no electrical safety problem, can be achieved using this method. Furthermore, this method can be applied to multi-channel isolated bio-potential measurement systems and home health care devices under a steady measuring environment.

시장요인이 고려된 특성치 준거 기술측정 (A characteristic-based technology measurement with market factor considered)

  • 김성철;유평일
    • 경영과학
    • /
    • 제11권2호
    • /
    • pp.237-253
    • /
    • 1994
  • Technology measurement is related with how to construct indicators of technological change and relative ranking of technological sophistication. Many attempts have been made to understand the measurement of technology. However, technology measurement still remains little understood problem in spite of its importance. This article is concerned with improving the measurement of technology by introducing market factors into the model. It illustrate a simple approach to the measurement of technology. This approach is based on the characteristic-space paradigm of technology. A relative ranking of technological sophistication for a product is measurable as a set of characteristics. The main feature of the proposed approach is the combination of technical factors and market factors. Technical factors are reflected in the definition of technological sophistication. Market factors are embraced in the determination of the relative importance assigned to each technology defining characteristics. Thus, the weight is determined by technical factors and market factors, which differentiates the study from the past based on judgmental technique such as experts' opinion.

  • PDF

컴퓨터단층 혈관조영술에서 스텐트 사이즈의 정확한 측정을 위한 상대적 측정법의 기초연구 (Fundamental Study of Relative Measurement for Accurate Measurement of Stent Size in Computed Tomography Angiography)

  • 이승영;홍주완;강수미;김수빈;전상훈;허영철
    • 한국방사선학회논문지
    • /
    • 제13권5호
    • /
    • pp.713-720
    • /
    • 2019
  • 본 연구의 목적은 컴퓨터단층 혈관조영술에서 혈관 직경을 정확하게 측정할 수 있는 새로운 측정 방법인 상대적 측정법의 기초연구 자료를 제공하고자 한다. 비이온성 요오드 조영제를 자체 제작한 관류 팬텀에 일정한 속도로 흐르게 한 후 컴퓨터단층 혈관조영술 검사를 시행하였다. 원시 데이터를 얻은 후 다중평면재구성 및 최대강도투사법으로 영상을 재구성하였고 장비 사에서 제공하는 거리측정 장치를 사용하여 팬텀의 직경을 측정하였다. 측정법은 고식적 측정법과 본 연구에서 제안하는 상대적 측정법을 사용하였다. 관류팬텀의 평균 직경은 다중평면재구성기법과 최대강도투사법 모두에서 상대적 측정법이 기존 측정법 보다 실측에 더 가깝게 나타났다(34% VS 24%, p<0.05). 하지만 두 가지 측정법 모두 실측보다 여전히 확대된 결과를 나타내고 있음을 확인하였다. 따라서 상대적 측정 방법에 대한 추가 연구가 필요한 실정이며, 이에 본 연구가 기초 자료를 제공할 수 있을 것이라 사료된다.

모사된 화재의 열적환경에서 열전대를 이용한 온도 측정오차에 관한 실험적 연구 (An Experimental Study on Temperature Measurement Bias using Thermocouple in Simulated Thermal Environments of Fire)

  • 한호식;윤홍석;황철홍;김성찬
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.7-13
    • /
    • 2017
  • An experimental study was conducted to identify the quantitative measurement bias for the bare-bead thermocouple (TC), which was widely used for measuring temperature in fire experiments. To this end, an apparatus could be controlled individually gas flow rate, preheating temperature and incident radiative heat flux was developed to simulate the thermal environments of fire. A relative measurement bias of bare-bead TC was evaluated with the comparison of double-shield aspirated TC. As a result, the relative measurement bias of bare-bead TC was gradually increased with the increase in radiative heat flux with constant gas temperature. The relative bias was also significantly increased with the decrease in gas temperature. Quantitatively, at the gas temperature of $20^{\circ}C$, the bare-bead TC had the relative bias of approximately 400% with the radiative heat flux of $20kW/m^2$ corresponding to thermal radiation level of the flashover. The present study was intend to provide fire researchers with methodologies for the reanalyses of temperature measured using bare-bead TC, radiation corrections, and validation of fire modeling.

KOLAS 교정기관 간 측정 동등성 확립을 위한 상대습도 변환기 숙련도 시험 (Relative Humidity Transducer Proficiency Test for KOLAS Humidity Calibration Laboratories)

  • 이상욱;이영석;최병일
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.447-454
    • /
    • 2023
  • The Korea Laboratory Accreditation Scheme (KOLAS) operates accreditation programs for ensuring measurement traceability with the International System (SI) of Units - the highest calibration standard that measurements can be tested against. As of September 2023, there are 70 KOLAS-accredited laboratories in the Republic of Korea that specialize in humidity calibration. Among them, 32 KOLAS laboratories, along with one laboratory not affiliated with KOLAS, participated in the proficiency test (PM 2023-11) for relative humidity transducers in 2023. This proficiency test was conducted within a relative humidity range of 20-90% at a temperature of approximately 20 ℃, taking into consideration the calibration and measurement capability (CMC) of the participating laboratories. The primary objective of the proficiency test was to establish the measurement equivalence between each participating laboratory and the reference laboratory, by calculating the number of equivalence (En). When |En| was less than 1, the measurements from the participating and reference laboratory were equivalent. Out of the 33 participating laboratories, 32 successfully met this criterion and passed the proficiency test.