• Title/Summary/Keyword: Relative Distance

Search Result 1,035, Processing Time 0.024 seconds

A model of a relative evaluation of the transfer distance between two modes (환승센터의 두 수단간 환승거리의 상대적 적정성 평가)

  • Cha, Dong-Deuk;O, Jae-Hak;Park, Wan-Yong;Park, Seon-Bok
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • One of the problems we face up at the time of planning or improving a transportation transfer facility is which modes and how close we have to put together. The goal here is to keep the connecting transportation mode as close as possible to the prime transit mode, so people travel a minimum transfer path, a distance from one mode to another. Too much a physical separation between modes will limit, even with an intensive improvement of the component links, the level of service of a transfer path as a whole. This study defined a transfer path as the whole stretch of the distance from an arrival point of one mode to the departure point of the connecting mode. The transfer path was divided into three typical segments as side walk, stairways, and indoor corridors. Preference surveys were made for each of these segments, resulting in relative resistance. The sum of individual segments weighted with the relative resistance will make a transfer resistance of the path, which in turn constitutes a transfer utility function together with the overall satisfaction score obtained by the interview survey. The transfer utility function has been utilized to evaluate the transfer distance between modes.

Relative Error Analysis for Measuring Value of Ground Resistance according to Position Variation of Potential Probe) (전위보조전극의 위치변화에 따른 접지저항 측정값의 상대오차분석)

  • Gil, Hyoung-Jun;Kim, Dong-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.96-102
    • /
    • 2009
  • In this paper, the effects of the position and the angle of the potential probes on the measurements of the ground resistance with the fall-of-potential method are described and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position and angle of auxiliary probes. In order to analyze the relative error for measuring value of ground resistance due to the position of the potential probe, ground resistance were measured in case that the distance of current probe was fixed at 50[m] and the distance of potential probe was located from l0[m] to 50[m]. Also, the potential probe was located at 30[$^{\circ}$], 45[$^{\circ}$], 60[$^{\circ}$], 90[$^{\circ}$] and 180[$^{\circ}$]. As a consequence, relative error decreased with increasing the distance of potential probe and decreasing the angle between current probe and potential probe. The results could be help to determine the position of potential probe when the ground resistance was measured at grounding system.

Performance Analysis of Landing Point Designation Technique Based on Relative Distance to Hazard for Lunar Lander (달 착륙선의 위험 상대거리 기반 착륙지 선정기법 성능 분석)

  • Lee, Choong-Min;Park, Young-Bum;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Lidar-based hazard avoidance landing system for lunar lander calculates hazard cost with respect to the desired local landing area in order to identify hazard and designate safe landing point where the cost is minimum basically using slope and roughness of the landing area. In this case, if the parameters are only considered, chosen landing target can be designated near hazard threatening the lander. In order to solve this problem and select optimal safe landing point, hazard cost based on relative distance to hazard should not be considered as well as cost based on terrain parameters. In this paper, the effect of hazard cost based on relative distance to hazard on safe landing performance was analyzed and it was confirmed that landing site designation with two relative distances to hazard results in the best safe landing performance by an experiment using three-dimensional depth camera.

A STUDY ABOUT THE CHILDREN'S COMCEPTION OF MOVEMENT AND SPEED (아동의 운동과 속력개념형성에 관한 연구)

  • Kim, Yun-Sig;Yun, Hee-Gon;Yun, Hyoung-Deok;Yun, Kyeong-Hi;Kim, Dong-Yeon;Hong, Myoung-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.2 no.1
    • /
    • pp.31-51
    • /
    • 1980
  • In order to research into the devel of the concept of movement and speed in our own way and compare with the Piaget's method, and then find out the formative period of such development, we have put the 192 primary school children as the model and obtained the following results. 1. As their grade upyards, all the experimental subjects showed the gradual progress generally regardless of sex or regions, while only the relative speed showed irregular progress. 2. There was no experimental subject which showed any remarkable sexual characteristics. But in the relative movement, the lower grade boys and higher grade girls made progress. In the subjects of circulation movement, intuition of speed, relative speed and speed of simultaneous movement, the boys marked better progress, whilst the girls were advanced a little in the speed of continuous movement with, different distance and time. 3. There was no conspicuous difference between the urban and rural areas, except a slight tendency that the urban children made better progress in the change of progressing direction, native continuous procedure of periodical movement, travelling road, and the speed of continuous movement with different distance and time whereas the rural children were more advanced in the relative movement, relative speed and intuition of speed. But it should be 'taken into consideration that the rural regions in our case were relatively developed in comparison with the traditional rural communities, which may explain about little regional difference. 4. Comparing our research results with the Piaget's theory, we have reached below results. Our research reports that the formative period of the conception of the problems of diverse progressing direction and a native continuous procedure of periodical movement was simultaneous, at the Piagetian level(at the fourth grade) which coincides with Piagetian theory. The travelling road should be made up a little lower at 2A/2B according' to Piagetian Level, whereas it was formed at the 4th grade as shown in our previous research. Intuition of speed should belong to the prior stage to concrete operation, but our research shows it was formed late at the 4th grade. Composition of displacement was made at the 6th grade, and it was almost equal to the first stage of formal operation(3A). But in the subjects of relative movement relative speed, the speed of continuous movement with different distance and time, relation and preservation of invariable speed, and accelerated motion, even 6th grade children marked a poor record. Summed up, the procedure conception as a basic movement conception coincides with the Piagetion level. But as for speed intuition, relative speed and speed fixation, it was Jar behind Piagetian level. Therefore it is required that we have to concentrate on the systematic training in these parts on the spot.

  • PDF

The Relative Distance in Taking Action for Collision Avoidance Maneuver of the Stand-on Vessel (피항조선시의 유지선 피항개시거리에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.363-371
    • /
    • 1996
  • The Steering and Sailing Rules of International Regulations for Preventing Collisions at Sea now in use direct the best aid - action to avoid collision by the stand - on vessel. But these rules do not refer to the safety relative distance between two vessels when she should take such action. In this paper, the author analyzed the ship's collision avoiding actions from the viewpoint of ship motions and worked out mathematical formulas to calculate the relative distances necessary for taking action to avoid collision. Figuring out the values of maneuvering indices through experiments of 11 actual ships of small, medium, large and mammoth size, the author applied these values to the calculating formulas and calculated the minimum relative distances. The main results are as follows: 1. It was confIrmed that the stand - on vessel should keep the greatest relative distance for taking best aid - action to avoid collision when the cross angle of course was $90^{\circ}$ and near it(70-$90^{\circ}$ ). 2. When the cross angle of course was $90^{\circ}$ , the minimum relative distance of small vessel(GT: 160-650tons) was found to be more than about 6.8 times of her own length, and those of medium(GT : 2,300-3,500tons), large(GT : 22,OOO-62,OOOtons) and mammoth(GT : 91,000-139,000tons) vessels were found to be more than about 9.0 times, about 5.4 times and about 6.8 times of their own lengths. 3. It was confIrmed that collision danger was greater when crossing angle was obtuse than in an acute angle, therefore greater relative distance was to be kept by the stand - on vessel for taking best aid - action to avoid collision in the case of the obtuse angle. 4. In every vessels, in the case of $90^{\circ}$ cross angle of course the safety minimum relative distance was found to be more than about 9.0 times of their own lengths.

  • PDF

Relative Navigation with Intermittent Laser-based Measurement for Spacecraft Formation Flying

  • Lee, Jongwoo;Park, Sang-Young;Kang, Dae-Eun
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.163-173
    • /
    • 2018
  • This paper presents relative navigation using intermittent laser-based measurement data for spacecraft flying formation that consist of two spacecrafts; namely, chief and deputy spacecrafts. The measurement data consists of the relative distance measured by a femtosecond laser, and the relative angles between the two spacecrafts. The filtering algorithms used for the relative navigation are the extended Kalman filter (EKF), unscented Kalman filter (UKF), and least squares recursive filter (LSRF). Numerical simulations reveal that the relative navigation performances of the EKF- and UKF-based relative navigation algorithms decrease in accuracy as the measurement outage period increases. However, the relative navigation performance of the UKF-based algorithm is 95 % more accurate than that of the EKF-based algorithm when the measurement outage period is 80 sec. Although the relative navigation performance of the LSRF-based relative navigation algorithm is 94 % and 370 % less accurate than those of the EKF- and UKF-based navigation algorithms, respectively, when the measurement outage period is 5 sec; the navigation error varies within a range of 4 %, even though the measurement outage period is increased. The results of this study can be applied to the design of a relative navigation strategy using the developed algorithms with laser-based measurements for spacecraft formation flying.

Distance Transform Path Planning using DEM and Obstacle Map (DEM과 장애물 지도를 이용한 거리변환 경로계획)

  • Choe, Tok-Son;Jee, Tae-Young;Kim, Jun;Park, Yong-Woon;Ryu, Chul-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.92-94
    • /
    • 2005
  • Unmanned ground vehicles(UGVs) are expected to play a key role in the future army. These UGVs would be used for weapons platforms. logistics carriers, reconnaissance, surveillance, and target acquisition in the rough terrain. Most of path planning methodologies for UGVs offer an optimal or sub-optimal shortest-path in a 20 space. However, those methodologies do not consider increment and reduction effects of relative distance when a UGV climbs up or goes down in the slope of rough terrain. In this paper, we propose a novel path planning methodology using the modified distance transform algorithm. Our proposed path planning methodology employs two kinds of map. One is binary obstacle map. The other is the DEM. With these two maps, the modified distance transform algorithm in which distance between cells is increased or decreased by weighting function of slope is suggested. The proposed methodology is verified by various simulations on the randomly generated DEM and obstacle map.

  • PDF

Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

  • Cai, LiJun;Zhang, Jing;Chen, Lei;He, TingQin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2142-2161
    • /
    • 2018
  • Distance dynamics model is an excellent model for uncovering the community structure of a complex network. However, the model has poor robustness. To improve the robustness, we design an enhanced distance dynamics model based on Ego-Leader and propose a corresponding community detection algorithm, called E-Attractor. The main contributions of E-Attractor are as follows. First, to get rid of sensitive parameter ${\lambda}$, Ego-Leader is introduced into the distance dynamics model to determine the influence of an exclusive neighbor on the distance. Second, based on top-k Ego-Leader, we design an enhanced distance dynamics model. In contrast to the traditional model, enhanced model has better robustness for all networks. Extensive experiments show that E-Attractor has good performance relative to several state-of-the-art algorithms.