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Abstract 
 

Distance dynamics model is an excellent model for uncovering the community structure of a 
complex network. However, the model has poor robustness. To improve the robustness, we 
design an enhanced distance dynamics model based on Ego-Leader and propose a 
corresponding community detection algorithm, called E-Attractor. The main contributions of 
E-Attractor are as follows. First, to get rid of sensitive parameter λ, Ego-Leader is introduced 
into the distance dynamics model to determine the influence of an exclusive neighbor on the 
distance. Second, based on top-k Ego-Leader, we design an enhanced distance dynamics 
model. In contrast to the traditional model, enhanced model has better robustness for all 
networks. Extensive experiments show that E-Attractor has good performance relative to 
several state-of-the-art algorithms. 
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1. Introduction 

Most real-world systems, such as social networks and electric networks, can be modeled as 
networks and have some common features (also called community structure [1]). For example, 
these networks are scale-free, modular, small-world, and so on. Generally, a community is a 
set of nodes that is densely connected internally and loosely connected externally. Community 
detection is used to find the community structure of a network and to help us analyze the 
organizational structure, functional behavior, and evolution dynamics of the network. 
Recently, community detection techniques have been widely used in various domains, such as 
epidemiology networks, biological networks, metabolic networks, ecological webs, and 
particularly online social networks [2]. 

Over the years, many community detection algorithms have been developed to reveal the 
hidden community structure of networks, including modularity optimization algorithms, 
spectral clustering algorithms, graph partition algorithms, and dynamics algorithms [3]. Under 
the category of dynamics algorithms, there is a sub-category based on the synchronization 
phenomena; we call them synchronization-inspired dynamics algorithms. In 2010, inspired by 
the nature of synchronization phenomena, Böhm C [4] proposed a natural clustering method 
for any given dataset based on exploiting the synchronization dynamics. To adapt to various 
different datasets (text data or high-dimensional data), Böhm C selected and extended the 
Kuramoto Model [5-6] to simulate the synchronization dynamics. The Kuramoto Model can 
work well in various application environments (text data or high-dimensional data), especially 
in the case of a scattered dataset, where any two objects have no obvious association. Based on 
the clustering algorithm, many extended methods are proposed for different domains, such as 
high-dimensional data [5], data streams [6], graph clustering, anomaly mining [7], image 
segmentation [8], and biological information [9]. 

In the context of community detection, the dataset is a network graph. In the graph, edges 
indicate the obvious associations between data objects, and the properties of data objects are 
often ignored. In 2015, driven by network topology, Shao [10] addressed community detection 
by developing distance dynamics model to simulate the synchronization dynamics from a new 
view, namely, the edge, instead of traditional Kuramoto Model. In the new model, each edge 
of a network is associated with an initial distance. As time evolves, driven by network 
topology, each distance changes gradually. Finally, those objects with high similarity will 
synchronize together, and dissimilar objects will be far away from each other. The new model 
has several attractive benefits, such as “intuitive community detection,” “small community 
detection,” and “anomaly detection.” These benefits are very important and desirable in 
community detection. The model is described in more detail in Section 2. 

A drawback of the distance dynamics model is that it is sensitive to the value of cohesion 
parameter λ, and deriving the best value of λ is difficult. The cohesion parameter λ is 
introduced as a threshold determining the negative or positive influence of an exclusive 
neighbor on the distance. With a high value of λ, nodes are more likely to be mutually 
exclusive during the synchronization dynamics process, and the distance dynamics model 
yields more communities. Conversely, when λ is small, nodes are more likely to synchronize 
together, and the model produces larger communities. By modulating cohesion parameter λ, 
the distance dynamics model allows analyzing the community structure from coarse to fine. 
However, different networks are very sensitive to parameter λ. There are three main 
difficulties associated with the importance of parameter λ. 
 Each network has its own density and properties, so each network needs a different value 

of λ. Although the region [0.4, 0.6] is recommended for the cohesion parameter λ in the 
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model, this range is only suitable for a small number of networks and does not work well 
in most networks.  

 There is no powerful or robust method to obtain the best value of λ for different networks. 
To achieve a desired or perfect partitioning requires a long period of constant adjustment 
of λ with observation of the resulting community structure. Moreover, class labels 
(ground truth) are unknown for most real-world networks, making obtaining the best 
value of λ for a network very difficult.  

 Minor changes to parameter λ may cause great differences in the resulting community 
structure. 

1.1 Basic Idea 
The motivation of this paper is to further optimize the robustness of the distance dynamics 
model. Toward that aim, we introduce Ego-Leader to replace the sensitive cohesion parameter 
λ in the distance dynamics model. 
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Fig. 1. Illustration of Ego-Leader.  

By carefully analyzing synchronization process phenomena, we find that there are some 
leaders hiding in the neighbor set of each node. For each node, these leaders determine the 
movement of the node in the synchronization process. The leaders of a node remain constant 
throughout the synchronization process. Moreover, these leaders are local rather than global. 
That is, two nearby nodes may have completely different leaders. In this paper, we call these 
node leaders the Ego-Leaders. We introduce Ego-Leader to replace the cohesion parameter λ 
in the distance dynamics model to determine whether two indirectly connected nodes are 
similar and to estimate the negative or positive influence of one exclusive neighbor on the 
distance. When two indirectly connected nodes have common objects in their respective 
Ego-Leaders, we assume these two nodes are similar, and these common leaders will attract 
the two nodes to move towards themselves in the synchronization dynamics process. Thus, a 
node as the exclusive neighbor of another node will yield a positive influence on the distance, 
reducing the value of the distance. Conversely, when two indirectly connected nodes do not 
have common objects in an Ego-Leader, these two nodes are dissimilar, and the two nodes will 
keep away from each other in the synchronization process. Thus, a node as the exclusive 
neighbor of another node will yield a negative influence on the distance, increasing the value 
of the distance. By using the Ego-Leader, we can overcome the imperfections of the distance 
dynamics model caused by the cohesion parameter λ. There are two reasons for this 
improvement. First, Ego-leader is easily obtained. Second, Ego-Leader is local and common 
to all networks. 
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To describe the Ego-Leader more clearly, let us take a simple example. In Fig. 1, node 1 
and node 4 are two indirectly connected nodes, node 4 is an exclusive neighbor for edge e(1,5), 
and we call node 1 and node 4 an exclusive neighbor pair, denoted en(1,4). Similarly, node 3 
and node 5 are two indirectly connected nodes, node 3 is an exclusive neighbor for edge e(4,5), 
and we call node 3 and node 5 the exclusive neighbor pair en(3,5). For the pair en(1,4) in Fig. 
1(a), we find the Ego-Leader of node 1 and node 4 from the neighbor set (the gray dashed 
circle) of edge e(1,5). The Ego-Leader of node 1 encompasses node 10 and node 6 (two red 
nodes), while the Ego-Leader of node 4 is only node 6. Because node 6 is common to the 
Ego-Leaders of node 1 and node 4, we think node 1 is similar to node 4, and common leader 
node 6 will attract node 1 and node 4 to move towards itself in the synchronization process. 
For the edge e(1,5), exclusive neighbor 4 will produce a positive influence and reduce the 
distance of e(1,5). For contrast, let us look at the exclusive neighbor pair en(3,5) in Fig. 1(b). 
The Ego-Leader of node 3 is node 2, and the Ego-Leader of node 5 comprises node 1 and node 
6. Because there is not a common object in the Ego-Leaders of node 3 and node 5, we consider 
node 3 dissimilar to node 5, and node 3 keeps away from node 5 in the synchronization process. 
For the edge e(4,5), exclusive neighbor node 3 will yield a negative influence, increasing the 
distance of e(4,5).   

1.2 Key contributions 
Some significant contributions of this paper are as follows: 
 A top-k level Ego-Leader discovery algorithm is developed to find the Ego-Leader of each 

node from the network topology. 
 An enhanced distance dynamics model is designed, where Ego-Leader is used to replace the 

traditional cohesion parameter λ. Based on the enhanced model, a corresponding community 
detection algorithm is described, called E-Attractor. 
The remainder of this paper is organized as follows. The traditional distance dynamics model 

is described in Section 2. Section 3 shows the  Ego-Leader. Section 4 demonstrates our enhanced 
model and corresponding community detection algorithm (E-Attractor). Extensive experimental 
evaluation is presented in Section 5. Section 6 concludes this paper. 

2. Traditional Distance Dynamics Model 
Distance dynamics model is a typical dynamics model for community detection proposed in 
2015 [10]. The process of the model is as follows: to start, each edge is associated with an 
initial distance; as time evolves, three different interaction models are used to expand or shrink 
each distance gradually; finally, all distances converge and the community structure of the 
network is naturally formed by removing the edges with the long distance value. In the 
following, we introduce the background and three interaction patterns of the distance 
dynamics model in detail. 

2.1 Related Background 
Definition 1 (undirected graph). Let G=(V,E,W) be an undirected graph, where V is the 

node set, E is the edge set, and W is the corresponding weight set of all edges. Each edge 
e(u,v)ϵE implies a communication connection between node u and v. w(u,v) is the weight of 
corresponding edge e(u,v

Definition 2 (neighbors of node u). Given an undirected graph G=(V,E,W), the neighbors 
of node u N(u) is a node set that consists of node u and its connected nodes and is defined as 
follows:  
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( ) { }{ } { },   N u v V u v E u= ∈ ∈                                      (1) 
Definition 3 (Jaccard distance). Given an undirected graph G=(V,E,W), the Jaccard 

distance [20] between node u and node v is defined as: 
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In the above equation, |*| indicates the size of set *, and N(u) comprises the neighbors of 
node u. The Jaccard distance measures the similarity of the neighbor sets of node u and node v. 
The more common neighbors the two nodes have, the greater similarity the two nodes have 
and the less the value of the Jaccard distance will be, and vice versa. 

For the weighted undirected graph, because each edge has a different weight, the 
computational model of the Jaccard distance is different. The new computational model is 
extended as: 
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2.2 Interaction Model 
In the traditional distance dynamics model, three interaction patterns are proposed to simulate 
the distance dynamics. Fig. 2 shows the three interaction patterns. 
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linked nodes

(c)  Influence from 
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(d)  Influence from 
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Fig. 2. Three distinct interaction patterns. 

Pattern 1: Influence from directly linked nodes. The distance d(u,v) between node u and 
node v is obviously influenced by two directly linked nodes u and v. Through mutual 
interactions, one node attracts the other to move towards it, thus the distance d(u,v) decreases 
(see Fig. 2 (b)). Therefore, to characterize the change in the distance d(u, v), DI is defined to 
represent the influence from two directly linked nodes, as follows: 

( )( )
( )

( )( )
( )

1 , 1 ,
 

f d u v f d u v
DI

deg u deg v

 − −
= − +  

 
                                 (4) 

In pattern DI, deg(u) indicates the degree of node u, and f(·) is a coupling function, where 
sin(·) is the default. The term 1-d(u,v) implies the similarity of the inherent structure or 
properties of node u and v. The term 1/deg(u) is a normalized factor that is used to account for 
the different influences between linked nodes with diverse degrees. 

Pattern 2: Influence from common neighbors. The distance d(u,v) is influenced by 
common neighbors CN=(N(u)-u)∩(N(v)-v) of nodes u and v. Each common neighbor is a node 
connected to both node u and node v. In the dynamic interaction process, since each common 
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neighbor communicates with nodes u and v, the common neighbor will gradually attract two 
nodes to move towards itself, and thus lead to t decrease of the distance d(u, v) (see Fig. 2 (c)). 
The second interaction pattern is called CI and is defined as follows. 

  
( )( ) ( )( )
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( )( ) ( )( )

( )
1 , 1 , 1 , 1 ,
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In pattern CI, for each common neighbor x, the two terms (1-d(x,u)) and (1-d(x,v)) are used 
to further measure the difference in influence between pattern DI and pattern CI.  

Pattern 3: Influence from exclusive neighbors. The influence of exclusive neighbors is 
the third interaction pattern. Each exclusive neighbor in EN(u)=N(u)-(N(u)∩N(v)) or 
EN(v)=N(v)- (N(u)∩N(v)) connects to only one of nodes u or v, (see Fig. 2 (d)). And each 
exclusive neighbor and the indirectly connected end node compose an exclusive neighbor pair. 
In the dynamic interaction process, each exclusive neighbor will attract only one node (node u 
or v) to move towards itself. However, we do not know whether another node is close to the 
exclusive neighbor. To determine the positive or negative influence of an exclusive neighbor 
on the distance, a cohesion parameter λ is introduced to measure the similarity of two nodes in 
an exclusive neighbor pair and is defined as follows. 
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In the above equation, ρ(x,u) indicates the positive or negative influence from exclusive 
neighbors EN(u) on the distance d(u, v). The third interaction pattern, EI, based on the 
cohesion parameter λ, is defined as: 
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Finally, considering the three interaction patterns together, the dynamics of distance d(u,v) 
between nodes u and v over time is governed by: 

( ) ( ) ( ) ( ) ( ), , 1 , ,d u v t d u v t DI t CI t EI t+ = + + +                            (8) 
where d(u,v,t+1) is the new distance at time step t+1. DI(t), CI(t) and EI(t) are the three 

different influences from two directly linked nodes, common neighbors, and exclusive 
neighbors, respectively. 

3. Ego-Leader 
In this paper, for any node, Ego-Leader is the set of nodes with the greatest power in the node’s 
neighbor set. To find the Ego-Leader of a node, we must select a way to measure the capacity 
of each neighbor. Generally, degree centrality, betweenness centrality, closeness centrality, 
subgraph centrality, and eigenvector centrality are five classical measurements of centrality 
[11]. However, these five metrics are global metrics. They represent the capacity of a node in 
the whole network. In this paper, Ego-Leader is a local metric and applies only to one node 
rather than the whole network. That is, the scope of activity of Ego-Leader is the neighbor set 
of a node. Therefore, traditional metrics of measuring node capacity cannot work for 
determining the Ego-Leader. We need to find a new, local metric of measuring node capacity. 

3.1 Asymmetric edge clustering coefficient 
In synchronization dynamics, an Ego-Leader will attract some nodes to synchronize with itself. 
That is, for any node, its Ego-Leader has a greater probability of clustering together with the 
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node (some nodes synchronize together). Hence, we consider the clustering relationship to be 
a good metric for Ego-Leader. In this paper, the asymmetric edge clustering coefficient is 
proposed as the metric to measure the capacity of a neighbor. In the following, we describe the 
concept of an edge clustering coefficient, then present the asymmetric edge clustering 
coefficient. 

The notion of edge clustering coefficient originates in the research on community discovery 
in complex networks [11]. It characterizes the closeness between the two end nodes of an edge 
and the other nodes around them. The edges with higher clustering coefficients tend to hide in 
the community structure of the network. This view has been proved in many works [12]. The 
edge clustering coefficient is a measure that can both evaluate the importance of edges in the 
network and describe how close an edge’s two end nodes are. 

Definition 4 (Edge clustering coefficient): for an edge e(u,v) connecting node u and node v, 
we observe how many other nodes adjoin both u and v. The edge clustering coefficient of e(u,v) 
can be defined as 

,( , )
( ( ) 1, ( ) 1)

u vz
ECC u v

min deg u deg v
=

− −
                         (9) 

where zu,v denotes the actual number of triangles in the network topology that include edge 
e(u,v), deg(u) and deg(v) are degrees of node u and node v, respectively, and min(deg(u)-1, 
deg(v)-1) is the maximum number of triangles containing edge e(u,v). When either end node (u 
or v) is a leaf node, the edge clustering coefficient defaults to 0.  

The traditional edge clustering coefficient is a symmetric local metric, ECC(u,v)=ECC(v,u), 
but Ego-Leader is asymmetric. That is, node v may be in the Ego-Leader of node u when node 
u is not in the Ego-Leader of node v. Therefore, the traditional edge clustering coefficient 
cannot fully address the asymmetry of Ego-Leader. Therefore, we revise the traditional edge 
clustering coefficient and propose an asymmetric edge clustering coefficient. 

Definition 5 (Asymmetric edge clustering coefficient): for an edge e(u,v) connecting 
node u and node v, the asymmetric edge clustering coefficient can be defined as. 

,( , )
( ) 1
u vz

AECC u v
deg v

=
−

                                    (10) 

The asymmetric edge clustering coefficient indicates the influence of node u on node v and 
the degree of overlap in the two nodes’ neighbor sets. The higher AECC(u,v) is, the greater the 
influence of node u on node v is. To illustrate AECC more clearly, let us take a simple example. 
In Fig. 3, we try to calculate the AECC of the thick green edge e(6,0). n6 and n0 are the two 
end nodes of edge e(6,0), and the degrees of these two nodes are 4 and 6, respectively. From 
the figure, we can see that there are only two triangles (∆609 and ∆607) including the edge e(6,0). 
Therefore, AECC(6,0)=2/(6-1)=0.4, and AECC(0,6)=2/(4-1)=0.67. That is, AECC(6,0) is not 
equal to AECC(0,6), proving the asymmetric edge clustering coefficient is an asymmetric 
local metric and completely meets the requirements of Ego-Leader. 
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Fig. 3. Example of 10-node and 23-edge graph. 
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3.2 Ego-Leader and its features 
In summary, we use the asymmetric edge clustering coefficient AECC to find the Ego-Leader 
of any node in the network. So far, we have a clear understanding of the Ego-Leader of a node. 
The Ego-Leader of a node consists of multiple neighbors having the greatest AECC value. In 
addition, the number of nodes in a node’s Ego-Leader is never more than the number of 
neighbors of the node. Hence, the Ego-Leader has the following important features. 

(1) Ego-Leader is asymmetric. 
This feature is very important and implies the intrinsic Leader-Follower relationship. The 

importance of a Leader to its Followers is obviously greater than the importance of any 
Follower to its Leader. Moreover, the proof for this feature is self-evident. 

(2) Ego-Leader is local and static. 
Proof: as we have shown, the Ego-Leader of a node comprises the nodes of greatest power 

in its neighbor set. That is, any Ego-Leader only works for one node, and its scope of activity is 
the neighbor set of the node. Therefore, the Ego-Leader is a local metric and strongly 
dependent on the network topology. Because the network topology is static, the Ego-Leader of 
a node is also static and does not incur any change.  

In addition, this feature has been proved in many works [15-16]. 
(3) The centrality of Ego-Leader in its group is positively related to the objective 

performance of that leader’s group. 
This feature indicates that the greater the power of a group leader is, the greater the 

probability that all members of this group cluster together. This feature has also been proved in 
previous work [17]. 

3.3 Finding top-k level Ego-Leader 
In this paper, the goal of introducing our Ego-Leader is to replace the traditional cohesion 
parameter λ in determining the influence of an exclusive neighbor on distance. However, in 
the traditional model, cohesion parameter λ has a useful feature. That is, by modulating the 
cohesion parameter λ, the distance dynamics model allows analyzing the network’s 
community structure from coarse to fine. With a higher value of λ, the distance dynamics 
model yields more communities, while larger communities are produced with a lower value of 
λ. To retain this feature, we use parameter k to dynamically adjust the number of objects in the 
Ego-Leader of a node. Hence, we select the top-k level objects having greatest power from the 
neighbor set to form the Ego-Leader of a node. When two neighbors have the same influence 
(AECC) on a node, those two neighbors belong to the same level. 
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Fig. 4. Top-2 level Ego-Leader. 
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To describe the top-k level Ego-Leader concept more clearly, let us take a simple example. 
In Fig. 4, we try to find the top-2 level Ego-Leader for green node 6. We search the neighbor 
set of node 6, as shown in the red dashed circle of Fig. 4. From the neighbor set, we find node 
1 has the highest AECC value because there are 4 triangles (∆146, ∆156, ∆176, and ∆186) 
containing edge e(1,6). Thus, the dark red node, 1, is the level-1 Ego-Leader of node 6. 
Likewise, two light red nodes 5 and 7 have the second highest AECC value, 
AECC(5,6)=AECC(7,6), because there are 3 triangles between node 5 (node 7) and node 6, 
corresponding to ∆516, ∆546, ∆576 (or ∆716, ∆756, ∆786). Thus, the light red node 5 and node 7 
comprise the level-2 Ego-Leader of node 6. That is, for node 6, the top-2 level Ego-Leader 
includes node 1, node 5, and node 7. 

By modulating k, we can easily adjust the scale of node Ego-Leaders, and this modified 
distance dynamics model also allows analyzing network’s community structure from coarse to 
fine. The higher the value of k is, the bigger the scale of Ego-Leader is, increasing the 
probability that an exclusive neighbor yields positive influence and simultaneously increasing 
the size of the community found by the distance dynamics model. Conversely, the model 
produces more communities with a lower value of k. In contrast to the traditional cohesion 
parameter λ, we find the top-k Ego-Leader has the following advantages. 
 It makes the distance dynamics model more robust. Ego-Leader is local and common for 

all networks, so it is not sensitive to different networks. Moreover, Ego-Leader is strongly 
dependent on network topology, so it is more suitable than cohesion parameter λ for the 
distance dynamics model and makes the model more robust.  

 It is easier to obtain the best value of k. To get a perfect network community structure, we 
need to get the best value of parameter k. For that, we only need to adjust the value of k 
several times, generally fewer than 6, from top-3 to top-8. By contrast, to get the best value 
of cohesion parameter λ for different networks requires a long period of constant, manual 
adjustment of λ.  

 It is easier to understand and accept. In contrast to traditional cohesion parameter λ, 
Ego-Leader is easier to understand and accept in the distance dynamics model because the 
synchronization dynamics process in the distance dynamics model has been regarded as 
the Leader-Follower process in previous research [17-18]. 

 It is fast, and no extra time is required. Because the asymmetric edge clustering 
coefficient is a local metric, the calculation speed of Ego-Leaders is very fast. Moreover, 
the calculation of Ego-Leaders can be merged into the initial distance calculation phase of 
the distance dynamics model, so no extra time is required for calculating the nodes’ 
Ego-Leaders. 

In summary, the process of finding top-k level Ego-Leaders is very simple. First, each edge 
of the network is scanned sequentially. For each node, we build a queue to sort the neighbors 
according to their capacity. For edge e(u,v), the asymmetric edge clustering coefficients 
AECC(u,v) and AECC(v,u) are calculated using Eq.10 to measure the influence of node u (or 
node v) to node v (or node u). According to the value of AECC(u,v) (or AECC(v,u)), neighbor 
u (or v) is stored into the queue of node v (or u) in descending order. Second, we judge 
whether the AECCs of all neighbors of node u (node v) have been calculated. When the AECC 
has been calculated for all neighbors of node u (or node v), the top-k level neighbors are 
chosen from the queue of node u (or node v) as its Ego-Leader. When the value of k is greater 
than the degree of node u (or node v), all neighbors are selected to form the Ego-Leader. Third, 
when all edges of the network have been scanned, the process is over. 
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3.4 Simplify validation 
To validate the effectiveness of Ego-Leader, we select two classic networks to evaluate 
whether Ego-Leader correctly determines the influence of an exclusive neighbor on distance, 
thus replacing traditional cohesion parameter λ. Two networks, the Zachary’s karate club and 
Dolphins networks, are publicly available from the UCI network data repository 
(https://network data.ics.uci.edu/index.php). The process of validation is as follows. We 
randomly sample 30 indirectly connected node pairs from the Zachary’s karate club network 
and 100 indirectly connected node pairs from the Dolphins network. We label each indirectly 
connected node pair as an exclusive neighbor pair because one node must be the exclusive 
neighbor of another node in the pair. We use top-2 Ego-Leader and cohesion parameter λ 
(λ=0.5) as two distinct ways to determine whether the two nodes of an exclusive neighbor pair 
are similar. If two nodes in the exclusive neighbor pair are similar, the exclusive node will 
produce a positive influence on distance. If the nodes are not similar, the exclusive node will 
yield a negative influence on the distance. 
 

Table 1. Validation of Ego-Leader on karate club network. 

Exclusive 
neighbor pair 

Ego-Leader Cohesion parameter λ 

first node second node similar Jaccard 
distance λ similar 

(23↔30) [29, 27] [8, 32] False 0.77 0.5 False 
(23↔15) [29, 27] [32] False 0.71 0.5 False 
(26↔9) [29] [2] False 0.8 0.5 False 
(7↔13) [3, 1, 2] [3, 1, 2] True 0.42 0.5 True 
(8↔12) [30, 32, 2] [3] False 0.88 0.5 False 
(10↔6) [4, 5] [5, 16, 4] True 0.5 0.5 True 
(10↔7) [4,5] [3, 1, 2] False 0.88 0.5 False 
(12↔17) [3] [1] False 0.8 0.5 False 
(13↔7) [3, 1, 2] [3, 1, 2] True 0.43 0.5 True 
(17↔21) [0] [0] True 0.5 0.5 True 
 
The first network is the well-known Zachary’s karate club network, which consists of 34 

vertices and 78 undirected edges. Each node represents a member of the club, and each edge 
represents a tie between two members. For convenience, Table 1 shows the results of only 10 
exclusive neighbor pairs. From the table, we easily observe that Ego-Leader produces nearly 
the same choices as cohesion parameter λ. 

 
Table 2. Validation of Ego-Leader on Dolphins network. 

Exclusive 
neighbor pair 

Ego-Leader Cohesion parameter λ 

first node second 
node similar Jaccard 

distance λ similar 

(33↔44) [14, 37, 16] [38, 20, 2] False 0.86 0.5 False 
(23↔1) [51, 45] [27, 26, 54] False 0.92 0.5 False 
(6↔5)) [13, 57, 9] [9, 13, 57] True 0.5 0.5 True 
(40↔20) [14, 0, 37] [28, 16, 44] False 0.94 0.5 False 

https://network/
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(41↔26) [54, 13, 57] [27, 25] False 0.89 0.5 False 
(1↔57) [27, 26, 54] [13, 9, 6] False 0.81 0.5 False 
(2↔30) [10, 42, 61] [47, 19, 28] False 0.9 0.5 False 
(43↔0) [33, 38] [10, 47, 40] False 0.93 0.5 False 
(15↔51) [24, 18] [18, 4, 11] True 0.43 0.5 True 
(10↔20) [42, 0, 2] [28, 16, 44] False 0.93 0.5 False 
 
The second network is the Dolphins network. It is an undirected social network based on the 

frequent associations between 63 dolphins in a community living off Doubtful Sound (New 
Zealand). Similar to the karate club network, Table 2 shows only the results of 10 exclusive 
neighbor pairs. From the table, we can draw the same conclusion: Ego-Leader produces the 
same or similar results as cohesion parameter λ. 

Based on the above evaluations, we believe Ego-Leader can be introduced into the distance 
dynamics model and replace traditional cohesion parameter λ to determine the influence of an 
exclusive neighbor on distance. 

4. E-Attractor: Enhanced Distance Dynamics Model for Community 
Detection via Ego-Leader 

In this section, we describe an enhanced distance dynamics model based on Ego-Leader. Then, 
based on the enhanced model, we present a corresponding community detection algorithm 
called E-Attractor. 

4.1 Enhanced distance dynamics model 
In the traditional distance dynamics model, three interaction patterns (DI, CI, and EI) are used 
to simulate the distance dynamics. The details are provided in Section 2. In contrast to the 
traditional model, our enhanced distance dynamics model introduces Ego-Leader to replace 
the cohesion parameter λ. More specifically, the top-k Ego-Leader of each node is used to 
determine whether two indirectly connected nodes are similar and to decide the influence of an 
exclusive neighbor on distance. Because the traditional DI and CI patterns do not use cohesion 
parameter λ, these two patterns are unchanged in our enhanced model. We only improve the EI 
pattern via Ego-Leader.  

New Pattern 3: Influence from exclusive neighbors. The influence from the exclusive 
neighbors is the third interaction pattern. In the exclusive neighbor sets EN(u)=N(u)- (N(u) 
∩N(v)) and EN(v)=N(v)- (N(u) ∩N(v)), each node only connects to one end node, u or v, of 
edge e(u,v) (please see Fig.2 (d)). Each exclusive neighbor and corresponding indirectly 
connected end node form an exclusive neighbor pair. In the interaction process, each exclusive 
neighbor will only attract the node connected with it (node u or node v). However, we do not 
know whether another node (indirectly connected node) will be close to the exclusive 
neighbor. To determine the positive or negative influence of an exclusive neighbor on distance 
d(u,v), Ego-Leader is used and defined as: 

( )
( )( ) ( ) ( )
( )( )

 1 ,  0
,

1 ,                     otherwise         
k kd x v EgoL x EgoL v

x u
d x v

s
 − ≥= 
− −



                  (11) 

In the above equation, EgoLk(x) is the top-k Ego-Leader of node x. The function σ(x,u) not 
only indicates the direction of influence (positive or negative) of exclusive neighbor x on 
distance but also shows the strength of this influence. Hence, the new third interaction pattern, 
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NEI, is defined as: 
( )( ) ( )

( )( )

( )( ) ( )
( )( )
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Finally, considering the three interaction patterns together, the dynamics of distance d(u,v) 
between nodes u and v over time is governed by: 

( ) ( ) ( ) ( ) ( ), , 1 , ,d u v t d u v t DI t CI t NEI t+ = + + +                    (13) 
where d(u,v,t+1) is the new distance at time step t+1. DI(t), CI(t) and NEI(t) indicate three 

different influences from two directly linked nodes, common neighbors, and exclusive 
neighbors, respectively. 

4.2 E-Attractor algorithm 
In this section, we give a comprehensive description of the E-Attractor algorithm. The 
E-Attractor process is very simple, consisting mainly of the following three steps. 

1. At the start time (t=0), without any interaction, each edge is associated with an initial 
distance using the Jaccard-distance function (Eq.2 or Eq.3). At the same time, the two 
asymmetric edge clustering coefficients of each edge are calculated and stored into the 
queues of their respective end nodes. When all neighbors of an end node have been 
calculated, then the top-k level Ego-Leaders are chosen to form the Ego-Leader set. More 
detail is provided in Section 3. 

2. The dynamic interaction process is initiated. As time evolves, driven by the network 
topology, each distance changes gradually under the influence of three different 
interaction patterns (DI, CI, and NEI). In particular, the nodes with higher similarity 
synchronize faster, and the distances between these nodes decrease faster. At the same 
time, the nodes with higher dissimilarity separate faster, and the distances between these 
nodes increase faster. After multiple time steps, all distances converge, either to 0 or 1, 
ending the dynamic interaction process.  

3. After the dynamic interaction process, the community structure of the network is naturally 
detected by removing all edges with a distance value of 1. 

4.3 Time complexity 
The time complexity of E-Attractor is two-fold. First, each edge is associated with an initial 
distance, and the Ego-Leader of each node is calculated. Therefore, the time complexity is 
O(|E|), where |E| is the number of edges. Second, a dynamic interaction process is executed 
with T time steps. Thus, time complexity of this process is O(T*U*|E|), where U is the average 
number of exclusive neighbors of two linked nodes. In total, the time complexity of 
E-Attractor is O(|E|+T*U*|E|). 

5. Experimental Evaluation 

5.1 Evaluation Setup 
Comparison Algorithms. To evaluate the performance of the E-Attractor algorithm, we 
select five representative community detection algorithms as competitors. All comparison 
algorithms are listed in Table 3, where the InfoMap, FastGreedy and Louvain algorithms are 
considered to be the best algorithms for disjoint community detection [3,21], the LPA 
algorithm has a high speed, and the Attractor algorithm is a native algorithm built on the 
distance dynamics model. For all community detection algorithms, recommended parameter 
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defaults are used to get the best experimental results. 
 

Table 3. Comparison Algorithms. 

Algorithm Full Name Implement 

InfoMap [19] Maps of random walks on complex networks reveal community 
structure. Python 

FastGreedy [13] Finding community structure in very large networks. Python 
LPA [24] Label propagation through linear neighborhoods. Python 
Louvain [14] Fast unfolding of communities in large networks. Python 
Attractor [10] Community Detection based on Distance Dynamics. Python 

E-Attractor Enhanced distance dynamics model for community detection 
via Ego-Leader. Python 

 
Evaluation metrics. To extensively compare different community detection algorithms 

with respect to effectiveness, we select two widely used metrics to evaluate the cluster quality. 
(1) The first metric is Normalized Mutual Information (NMI) [23], which is defined in the 
context of classical clustering to compare two different partitions of one dataset by measuring 
how much information they have in common. (2) The second metric is the popular Adjusted 
Rand index [22]. It calculates the total number of pairs that belong to the same cluster, or to 
different clusters, comparing expected clusters and clustering results. All metrics scale 
between 0 and 1 for a random or a perfect clustering result, respectively. 

Experimental Platform. As the experimental platform, we rented a high-performance 
server (IBM x3650 m4) from National Super Computing Center of Changsha, located in 
Hunan province, China. The server comprises one CPU with 8 cores (Intel Xeon Processor 
E5-2603) and 16GB main memory. All algorithms are run on the high-performance server 
using the Windows server 2012 operating system. The E-Attractor and Attractor algorithm are 
implemented in Python. For the other four algorithms, we have downloaded the Python 
implementations from the official websites of the corresponding authors. 

 

5.2 Sensitivity of parameter k 
The first objective of experimental evaluation is to observe and validate the sensitivity of 
parameter k in the top-k Ego-Leader. Parameter k is defined to determine the scale of the 
nodes’ Ego-Leaders and, further, to decide the direction of the influence of an exclusive 
neighbor on the distance: positive influence or negative influence. Generally, when parameter 
k has higher value, each node has more members in its Ego-Leader, an exclusive neighbor has 
a larger probability of exerting a positive influence, and the E-Attractor algorithm yields 
bigger communities. Conversely, with lower k, each node has fewer Ego-Leader members, an 
exclusive neighbor is more likely to exert a negative influence, and E-Attractor yields more 
communities. By modulating parameter k, E-Attractor allows analyzing network community 
structure from coarse to fine. Moreover, parameter k is robust and easy to tune. To evaluate the 
sensitivity of parameter k, we adopt the Jazz network as the experimental dataset and observe 
the change in community structure when modifying the value of k gradually.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018                                   2155 

(a) C# vs k (b) k = 1 (c) k = 2

(d) k = [3 - 4] (e) k = 5 (f) k = [6 - 10]

Number  of   Ego-Leader  k

N
um

be
r  

of
  C

om
m

un
iti

es

 Fig. 5. Top-2 level Ego-Leader Sensitivity of parameter k on Jazz network. 

 

The Jazz network is a collaboration network used by jazz musicians. Each node represents a 
jazz musician, and an edge connects two musicians who have played together in a band. The 
network was collected in 2003. Fig. 5 (a) plots the number of communities for k ranging from 
1 to 10. The resulting community structures of the Jazz network with respect to distinct 
parameters are further illustrated in Fig. 5 (b) to Fig. 5 (f). As shown in the plot, when the 
value of k is smaller, E-Attractor yields more communities. Conversely, E-Attractor yields 
larger communities with higher values of k. Moreover, we can see that E-Attractor yields a 
perfect partitioning with parameter k over a long stable range (2 - 5). 

We also carry out numerous experiments on several synthetic networks to observe the 
resulting changes in communities discovered. Based on extensive experiments, we find that 
E-Attractor usually produces a good clustering result within the range k=[3-8]. Moreover, 
compared with the native Attractor algorithm requiring cohesion parameter λ, E-Attractor 
with parameter k is more robust. E-Attractor only needs to adjust parameter k 1~6 times to 
obtain a perfect partitioning of different networks, but Attractor needs to adjust parameter λ 
8~60 times to obtain a perfect partitioning of different networks.  We set parameter k=5 as the 
default value in the following experiments. 

5.3 Synthetic network 

(1) Network generation 

To compare the performance of various community detection algorithms, we use the LFR 
benchmark to generate several synthetic networks featuring distinct characteristics. The LFR 
benchmark generation model is defined as LFR(C#, Cs, Kmax, μ), where C# indicates the 
number of communities; Cs represents the number of nodes in one community; Kmax means the 
maximum degree of a node; and μ is the mixing parameter indicating the fraction of a node’s 
links outside its community, which is used to control the difficulty of community separation. 
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Table 4. Synthetic network. 

Network Node Edge Average degree  u Kmax Cs C# 
LFR1 140 917 13.1 0.25 18 50 4 
LFR2 691 5071 14.7 0.25 18 100 8 
LFR3 3180 33696 21.2 0.2 25 200 20 
LFR4 3746 39011 20.8 0.2 25 100 50 
LFR5 31194 141785 9.0 0.15 12 500 80 
LFR6 30382 137955 9.0 0.2 12 500 120 
LFR7 42170 271326 12.9 0.15 15 300 180 
LFR8 59662 373362 12.5 0.1 15 300 250 

 
Based on these four parameters, eight synthetic networks with ground-truth are generated, 

as listed in Table 4. For fair comparison, the eight synthetic networks have different network 
scale, community numbers (C#), average node degrees, and number of noise edges. The 
purpose of this generating scheme is to make synthetic networks that are more consistent with 
real-world networks. By modulating parameters C# and Cs, we cause each synthetic network 
to have a different network scale (nodes and edges) and community numbers (C#). Modulating 
parameter Kmax gives each synthetic network a different average node degree. Modulating 
parameter μ gives each synthetic network a different number of noise edges in each 
community. 

(2) Community detection performance 

The second objective of experimental evaluation is to test the community detection 
performance of various algorithms on LFR synthetic networks, based on NMI, ARI, and 
computation time. 

N
M

I

AR
I

(b) ARI  vs  Networks(a) NMI  vs  Networks  
Fig. 6. Community detection performance of different algorithms on LFR networks. 

 

Fig. 6 plots the community detection performance of various algorithms on LFR synthetic 
networks with respect to two distinct metrics. Fig. 6 (a) shows the respective NMI values, and 
Fig. 6 (b) shows the respective ARI values of the tested algorithms. From Fig. 6, we make the 
following observations. (1) For the NMI, the six community detection algorithms have good 
results, defined as an average value of NMI greater than 0.6. Comparing the six algorithms, we 
observe that the E-Attractor, Attractor, and Louvain algorithms have the best results and 
stability; the InfoMap algorithm is next; the FastGreedy and LPA algorithms are the worst. (2) 
For the ARI, the trend lines of the six algorithms are very uneven and imply the performance 
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of the algorithms is very unstable on different LFR networks. For instance, on the high noise 
networks (LRF-1~LFR-4, parameter u≥0.2), the ARI fluctuation is obvious for all six 
algorithms, where E-Attractor and Louvain are best, Attractor and InfoMap are next, and 
FastGreedy and LPA are worst. On the low noise networks (LRF-5~LFR-8, parameter u<0.2), 
Louvain and InfoMap are best, E-Attractor and Attractor are next, and LPA and FastGreedy 
are worst. (3) Merging NMI and ARI together, we see that the E-Attractor algorithm can 
perform better than the other five algorithms on the high noise networks (LFR-1~LFR-4). On 
the low-noise networks (LFR-5~LFR-8), the performance of the E-Attractor algorithm is 
poorer than that of the Louvain and InfoMap algorithms, but better than that of the Attractor, 
LPA, and FastGreedy algorithms. 

 
Table 5. Computation time of various algorithms on LFR networks (ms). 

Network LFR-1 LFR-2 LFR-3 LFR-4 LFR-5 LFR-6 LFR-7 LFR-8 
FastGreedy 803 4294 23095 24170 122141 101517 195473 244056 
InfoMap 500 3738 19175 20002 86473 84012 142374 187721 
Louvain 129 329 12143 1357 6029 5679 9521 13608 
LPA 57 127 489 501 2316 2143 3897 5327 
Attractor 575 3157 16608 17564 75561 73697 121124 165086 
EAttractor 792 3938 20312 21197 90875 89414 149021 205881 
 
Table 5 lists the computation time of the six algorithms on the LFR networks. As shown in 

Table 5, the computation time of the LPA algorithm is least, followed by the Louvain 
algorithm, then InfoMap, Attractor, and E-Attractor are next and have very similar times; 
FastGreedy is slowest. Contrasting the LPA and InfoMap algorithms, we observe that the 
computation time of InfoMap is close to 30~40 times that of LPA. Moreover, focusing on the 
Attractor, InfoMap and E-Attractor algorithms, the computation time of InfoMap is bigger 
than that of Attractor but smaller than that of E-Attractor. 

5.4 Real-world network 

(1) Network selection 

To further evaluate the performance of the various community detection algorithms, we 
choose six typical real-world networks with ground-truth for more experiments, as listed in 
Table 6. All chosen real-world networks are publicly available from the UCI network data 
repository (https://networkdata. ics.uci.edu/index.php) and Stanford large network dataset 
collection (http://snap.stanford.edu/data/). The six real-world networks belong to different 
network types, where karate is a social network, polbooks is a book network, adjnoun is a 
word association network, football is a football network, polblogs is a blog network, and 
DBLP is a collaboration network. Moreover, the six real-world networks have varying 
network density, where karate, adjnoun, and DBLP are sparse networks, and football, 
polbooks and polblogs are dense networks. 
 

Table 6. Real-world networks. 

Network Node Edge Average degree Network type 
karate 34 78 4.6 Social  

http://snap.stanford.edu/data/
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polbooks 105 441 8.4 Book  
adjnoun 112 425 7.6 Word  
football 115 613 10.7 Football  
polblogs 1490 19090 22.4 Weblogs  
DBLP 317080 1049866 6.6 Collaboration  

(2) Community detection performance 

The third objective of experimental evaluation is to test the community detection performance 
of various algorithms on real-world networks, based on NMI, ARI, and computation time. 
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(b) ARI  vs  Networks(a) NMI  vs  Networks  
Fig. 7. Community detection performance of different algorithms on real-world networks. 

 

Fig.7 shows the community detection performance of six algorithms on real-world 
networks, where Fig.7 (a) plots the NMI results, and Fig.7 (b) plots the ARI results. From 
Fig.7, we make the following observations. (1) For the NMI, the six algorithms display 
different benefits. Of the six algorithms, E-Attractor and Louvain generally provide the best 
NMI, followed by InfoMap, Attractor, and LPA, with FastGreedy performing most poorly. 
Moreover, the E-Attractor, Attractor and Infomap algorithms are more stable than the other 
three algorithms. (2) With respect to the ARI, the trend lines of the six algorithms fluctuate 
widely, and the average ARI value is less than 0.5 for all six algorithms. Overall, the ARI 
values of E-Attractor and Louvain are better than those of the other four algorithms. (3) When 
we consider NMI and ARI together, E-Attractor, Attractor and Louvain clearly perform better 
than InfoMap, LPA and FastGreedy on both the high density real-world networks (football, 
polblogs and polbooks) and the sparse real-world networks (karate, adjnoun and DBLP). 
Focusing on the three better algorithms, the average NMI and ARI of E-Attractor are slightly 
better than those of Louvain and Attractor. 

 
Table 7. Computation time of various algorithms on real-world networks (ms). 

Network karate polbooks adjnoun football polblogs DBLP 
FastGreedy 339 1139 1289 1689 31977 6666447 
InfoMap 228 928 941 1021 21756 3766891 
Louvain 28 199 207 248 6987 250974 
LPA 12 129 133 141 3427 110889 
Attractor 241 991 1017 1145 22147 3910124 
E-Attractor 292 1035 1264 1406 29520 4359569 
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Table 7 shows the computation times of the six algorithms on the real-world networks. As 
shown in Table 7, LPA has the smallest computation time, Louvain is second, Attractor, 
InfoMap and E-Attractor are virtually tied for third, and FastGreedy requires the most 
computation time. Focusing on E-Attractor, InfoMap and Attractor, we observe that the 
computation time of Attractor is smaller than that of E-Attractor and larger than that of 
InfoMap. 

6. Conclusion 
This paper presents the design of an enhanced distance dynamics model based on Ego-Leader 
and proposes a corresponding community detection algorithm, E-Attractor. The paper’s 
contributions have two primary aspects. One, to remove the strong dependence of the distance 
dynamics model on cohesion parameter λ, the Ego-Leader is introduced to replace parameter λ 
in determining the influence of an exclusive neighbor on distance. Two, based on Ego-Leader, 
we design an enhanced distance dynamics model with better robustness. Using the new model, 
we propose a corresponding community detection algorithm, E-Attractor. Extensive 
experiments have been executed on both synthetic networks and real-world networks. The 
experimental results show the benefits of our algorithm. 
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