
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May. 2018 2142
Copyright ⓒ 2018 KSII

Enhanced Distance Dynamics Model for
Community Detection via Ego-Leader

Cai LiJun1, Zhang Jing2, Chen Lei2* and He TingQin1

1 College of Information Science and Engineering, Hunan University
Changsha 410082, China

[e-mail: lijuncai_hnu@126.com, hetingqin@hnu.edu.cn]
2 College of Electrical and Information Engineering, Hunan University

Changsha 410082, China
 [e-mail: zhangj_hnu@163.com, chenleixyz123@hnu.edu.cn]

*Corresponding author: Chen Lei

Received June 26, 2017; accepted November 16, 2017; published May 31, 2018

Abstract

Distance dynamics model is an excellent model for uncovering the community structure of a
complex network. However, the model has poor robustness. To improve the robustness, we
design an enhanced distance dynamics model based on Ego-Leader and propose a
corresponding community detection algorithm, called E-Attractor. The main contributions of
E-Attractor are as follows. First, to get rid of sensitive parameter λ, Ego-Leader is introduced
into the distance dynamics model to determine the influence of an exclusive neighbor on the
distance. Second, based on top-k Ego-Leader, we design an enhanced distance dynamics
model. In contrast to the traditional model, enhanced model has better robustness for all
networks. Extensive experiments show that E-Attractor has good performance relative to
several state-of-the-art algorithms.

Keywords: community detection, interaction model, complex network, Ego Network,
Leader

http://doi.org/10.3837/tiis.2018.05.013 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018 2143

1. Introduction

Most real-world systems, such as social networks and electric networks, can be modeled as
networks and have some common features (also called community structure [1]). For example,
these networks are scale-free, modular, small-world, and so on. Generally, a community is a
set of nodes that is densely connected internally and loosely connected externally. Community
detection is used to find the community structure of a network and to help us analyze the
organizational structure, functional behavior, and evolution dynamics of the network.
Recently, community detection techniques have been widely used in various domains, such as
epidemiology networks, biological networks, metabolic networks, ecological webs, and
particularly online social networks [2].

Over the years, many community detection algorithms have been developed to reveal the
hidden community structure of networks, including modularity optimization algorithms,
spectral clustering algorithms, graph partition algorithms, and dynamics algorithms [3]. Under
the category of dynamics algorithms, there is a sub-category based on the synchronization
phenomena; we call them synchronization-inspired dynamics algorithms. In 2010, inspired by
the nature of synchronization phenomena, Böhm C [4] proposed a natural clustering method
for any given dataset based on exploiting the synchronization dynamics. To adapt to various
different datasets (text data or high-dimensional data), Böhm C selected and extended the
Kuramoto Model [5-6] to simulate the synchronization dynamics. The Kuramoto Model can
work well in various application environments (text data or high-dimensional data), especially
in the case of a scattered dataset, where any two objects have no obvious association. Based on
the clustering algorithm, many extended methods are proposed for different domains, such as
high-dimensional data [5], data streams [6], graph clustering, anomaly mining [7], image
segmentation [8], and biological information [9].

In the context of community detection, the dataset is a network graph. In the graph, edges
indicate the obvious associations between data objects, and the properties of data objects are
often ignored. In 2015, driven by network topology, Shao [10] addressed community detection
by developing distance dynamics model to simulate the synchronization dynamics from a new
view, namely, the edge, instead of traditional Kuramoto Model. In the new model, each edge
of a network is associated with an initial distance. As time evolves, driven by network
topology, each distance changes gradually. Finally, those objects with high similarity will
synchronize together, and dissimilar objects will be far away from each other. The new model
has several attractive benefits, such as “intuitive community detection,” “small community
detection,” and “anomaly detection.” These benefits are very important and desirable in
community detection. The model is described in more detail in Section 2.

A drawback of the distance dynamics model is that it is sensitive to the value of cohesion
parameter λ, and deriving the best value of λ is difficult. The cohesion parameter λ is
introduced as a threshold determining the negative or positive influence of an exclusive
neighbor on the distance. With a high value of λ, nodes are more likely to be mutually
exclusive during the synchronization dynamics process, and the distance dynamics model
yields more communities. Conversely, when λ is small, nodes are more likely to synchronize
together, and the model produces larger communities. By modulating cohesion parameter λ,
the distance dynamics model allows analyzing the community structure from coarse to fine.
However, different networks are very sensitive to parameter λ. There are three main
difficulties associated with the importance of parameter λ.
 Each network has its own density and properties, so each network needs a different value

of λ. Although the region [0.4, 0.6] is recommended for the cohesion parameter λ in the

2144 Cai et al.: Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

model, this range is only suitable for a small number of networks and does not work well
in most networks.

 There is no powerful or robust method to obtain the best value of λ for different networks.
To achieve a desired or perfect partitioning requires a long period of constant adjustment
of λ with observation of the resulting community structure. Moreover, class labels
(ground truth) are unknown for most real-world networks, making obtaining the best
value of λ for a network very difficult.

 Minor changes to parameter λ may cause great differences in the resulting community
structure.

1.1 Basic Idea
The motivation of this paper is to further optimize the robustness of the distance dynamics
model. Toward that aim, we introduce Ego-Leader to replace the sensitive cohesion parameter
λ in the distance dynamics model.

2

19

8

3

4

5

12

17

10

6

7

Ego-Leader
of node 1

2

19

8

3

4

5

12

17

10

6

7

Ego-Leader
of node 3

(a) Ego-Leader for exclusive neighbor
pair en(1,4) on edge e(1,5)

(b) Ego-Leader for exclusive neighbor
pair en(3,5) on edge e(4,5)

Neighbors Set
 of edge e(1,5)

Neighbors Set
 of edge e(4,5)

Fig. 1. Illustration of Ego-Leader.

By carefully analyzing synchronization process phenomena, we find that there are some
leaders hiding in the neighbor set of each node. For each node, these leaders determine the
movement of the node in the synchronization process. The leaders of a node remain constant
throughout the synchronization process. Moreover, these leaders are local rather than global.
That is, two nearby nodes may have completely different leaders. In this paper, we call these
node leaders the Ego-Leaders. We introduce Ego-Leader to replace the cohesion parameter λ
in the distance dynamics model to determine whether two indirectly connected nodes are
similar and to estimate the negative or positive influence of one exclusive neighbor on the
distance. When two indirectly connected nodes have common objects in their respective
Ego-Leaders, we assume these two nodes are similar, and these common leaders will attract
the two nodes to move towards themselves in the synchronization dynamics process. Thus, a
node as the exclusive neighbor of another node will yield a positive influence on the distance,
reducing the value of the distance. Conversely, when two indirectly connected nodes do not
have common objects in an Ego-Leader, these two nodes are dissimilar, and the two nodes will
keep away from each other in the synchronization process. Thus, a node as the exclusive
neighbor of another node will yield a negative influence on the distance, increasing the value
of the distance. By using the Ego-Leader, we can overcome the imperfections of the distance
dynamics model caused by the cohesion parameter λ. There are two reasons for this
improvement. First, Ego-leader is easily obtained. Second, Ego-Leader is local and common
to all networks.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018 2145

To describe the Ego-Leader more clearly, let us take a simple example. In Fig. 1, node 1
and node 4 are two indirectly connected nodes, node 4 is an exclusive neighbor for edge e(1,5),
and we call node 1 and node 4 an exclusive neighbor pair, denoted en(1,4). Similarly, node 3
and node 5 are two indirectly connected nodes, node 3 is an exclusive neighbor for edge e(4,5),
and we call node 3 and node 5 the exclusive neighbor pair en(3,5). For the pair en(1,4) in Fig.
1(a), we find the Ego-Leader of node 1 and node 4 from the neighbor set (the gray dashed
circle) of edge e(1,5). The Ego-Leader of node 1 encompasses node 10 and node 6 (two red
nodes), while the Ego-Leader of node 4 is only node 6. Because node 6 is common to the
Ego-Leaders of node 1 and node 4, we think node 1 is similar to node 4, and common leader
node 6 will attract node 1 and node 4 to move towards itself in the synchronization process.
For the edge e(1,5), exclusive neighbor 4 will produce a positive influence and reduce the
distance of e(1,5). For contrast, let us look at the exclusive neighbor pair en(3,5) in Fig. 1(b).
The Ego-Leader of node 3 is node 2, and the Ego-Leader of node 5 comprises node 1 and node
6. Because there is not a common object in the Ego-Leaders of node 3 and node 5, we consider
node 3 dissimilar to node 5, and node 3 keeps away from node 5 in the synchronization process.
For the edge e(4,5), exclusive neighbor node 3 will yield a negative influence, increasing the
distance of e(4,5).

1.2 Key contributions
Some significant contributions of this paper are as follows:
 A top-k level Ego-Leader discovery algorithm is developed to find the Ego-Leader of each

node from the network topology.
 An enhanced distance dynamics model is designed, where Ego-Leader is used to replace the

traditional cohesion parameter λ. Based on the enhanced model, a corresponding community
detection algorithm is described, called E-Attractor.
The remainder of this paper is organized as follows. The traditional distance dynamics model

is described in Section 2. Section 3 shows the Ego-Leader. Section 4 demonstrates our enhanced
model and corresponding community detection algorithm (E-Attractor). Extensive experimental
evaluation is presented in Section 5. Section 6 concludes this paper.

2. Traditional Distance Dynamics Model
Distance dynamics model is a typical dynamics model for community detection proposed in
2015 [10]. The process of the model is as follows: to start, each edge is associated with an
initial distance; as time evolves, three different interaction models are used to expand or shrink
each distance gradually; finally, all distances converge and the community structure of the
network is naturally formed by removing the edges with the long distance value. In the
following, we introduce the background and three interaction patterns of the distance
dynamics model in detail.

2.1 Related Background
Definition 1 (undirected graph). Let G=(V,E,W) be an undirected graph, where V is the

node set, E is the edge set, and W is the corresponding weight set of all edges. Each edge
e(u,v)ϵE implies a communication connection between node u and v. w(u,v) is the weight of
corresponding edge e(u,v).

Definition 2 (neighbors of node u). Given an undirected graph G=(V,E,W), the neighbors
of node u N(u) is a node set that consists of node u and its connected nodes and is defined as
follows:

2146 Cai et al.: Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

() { }{ } { }, N u v V u v E u= ∈ ∈  (1)
Definition 3 (Jaccard distance). Given an undirected graph G=(V,E,W), the Jaccard

distance [20] between node u and node v is defined as:

()
() ()
() ()

, 1
N u N v

d u v
N u N v

= −




 (2)

In the above equation, |*| indicates the size of set *, and N(u) comprises the neighbors of
node u. The Jaccard distance measures the similarity of the neighbor sets of node u and node v.
The more common neighbors the two nodes have, the greater similarity the two nodes have
and the less the value of the Jaccard distance will be, and vice versa.

For the weighted undirected graph, because each edge has a different weight, the
computational model of the Jaccard distance is different. The new computational model is
extended as:

()
() ()()

() ()

()
{ } () (), ; ,

, ,
, 1

,
x N u N v

x y E x y N u N v

w u x w v x
d u v

w x y
∈

∈ ∈

+

= −
∑

∑




 (3)

2.2 Interaction Model
In the traditional distance dynamics model, three interaction patterns are proposed to simulate
the distance dynamics. Fig. 2 shows the three interaction patterns.

u d(u,v) v
u d v

d1

u d v

d2

x

u d v

d3 d3'

OR

(a) Graph (b) Influence from direct
linked nodes

(c) Influence from
common neighbors

(d) Influence from
exclusive neighbors

Fig. 2. Three distinct interaction patterns.

Pattern 1: Influence from directly linked nodes. The distance d(u,v) between node u and
node v is obviously influenced by two directly linked nodes u and v. Through mutual
interactions, one node attracts the other to move towards it, thus the distance d(u,v) decreases
(see Fig. 2 (b)). Therefore, to characterize the change in the distance d(u, v), DI is defined to
represent the influence from two directly linked nodes, as follows:

()()
()

()()
()

1 , 1 ,

f d u v f d u v
DI

deg u deg v

 − −
= − +  

 
 (4)

In pattern DI, deg(u) indicates the degree of node u, and f(·) is a coupling function, where
sin(·) is the default. The term 1-d(u,v) implies the similarity of the inherent structure or
properties of node u and v. The term 1/deg(u) is a normalized factor that is used to account for
the different influences between linked nodes with diverse degrees.

Pattern 2: Influence from common neighbors. The distance d(u,v) is influenced by
common neighbors CN=(N(u)-u)∩(N(v)-v) of nodes u and v. Each common neighbor is a node
connected to both node u and node v. In the dynamic interaction process, since each common

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018 2147

neighbor communicates with nodes u and v, the common neighbor will gradually attract two
nodes to move towards itself, and thus lead to t decrease of the distance d(u, v) (see Fig. 2 (c)).
The second interaction pattern is called CI and is defined as follows.

()() ()()

()
()() ()()

()
1 , 1 , 1 , 1 ,

x CN x CN

f d x u d x v f d x v d x u
CI

deg u deg v∈ ∈

   − ⋅ − − ⋅ −
= − −      

   
∑ ∑ (5)

In pattern CI, for each common neighbor x, the two terms (1-d(x,u)) and (1-d(x,v)) are used
to further measure the difference in influence between pattern DI and pattern CI.

Pattern 3: Influence from exclusive neighbors. The influence of exclusive neighbors is
the third interaction pattern. Each exclusive neighbor in EN(u)=N(u)-(N(u)∩N(v)) or
EN(v)=N(v)- (N(u)∩N(v)) connects to only one of nodes u or v, (see Fig. 2 (d)). And each
exclusive neighbor and the indirectly connected end node compose an exclusive neighbor pair.
In the dynamic interaction process, each exclusive neighbor will attract only one node (node u
or v) to move towards itself. However, we do not know whether another node is close to the
exclusive neighbor. To determine the positive or negative influence of an exclusive neighbor
on the distance, a cohesion parameter λ is introduced to measure the similarity of two nodes in
an exclusive neighbor pair and is defined as follows.

()
()() ()()
()()

1 , 1 ,
,

1 , otherwise

d x v d x v
x u

d x v

λ
r

λ

 − − ≥= 
− −

 (6)

In the above equation, ρ(x,u) indicates the positive or negative influence from exclusive
neighbors EN(u) on the distance d(u, v). The third interaction pattern, EI, based on the
cohesion parameter λ, is defined as:

()() ()
()()

()() ()
()()

1 , , 1 , ,

x EN u y EN v

f d x u x u f d y v y v
EI

deg u deg v
ρρ

∈ ∈

   − ⋅ − ⋅
= − −      

   
∑ ∑ (7)

Finally, considering the three interaction patterns together, the dynamics of distance d(u,v)
between nodes u and v over time is governed by:

() () () () (), , 1 , ,d u v t d u v t DI t CI t EI t+ = + + + (8)
where d(u,v,t+1) is the new distance at time step t+1. DI(t), CI(t) and EI(t) are the three

different influences from two directly linked nodes, common neighbors, and exclusive
neighbors, respectively.

3. Ego-Leader
In this paper, for any node, Ego-Leader is the set of nodes with the greatest power in the node’s
neighbor set. To find the Ego-Leader of a node, we must select a way to measure the capacity
of each neighbor. Generally, degree centrality, betweenness centrality, closeness centrality,
subgraph centrality, and eigenvector centrality are five classical measurements of centrality
[11]. However, these five metrics are global metrics. They represent the capacity of a node in
the whole network. In this paper, Ego-Leader is a local metric and applies only to one node
rather than the whole network. That is, the scope of activity of Ego-Leader is the neighbor set
of a node. Therefore, traditional metrics of measuring node capacity cannot work for
determining the Ego-Leader. We need to find a new, local metric of measuring node capacity.

3.1 Asymmetric edge clustering coefficient
In synchronization dynamics, an Ego-Leader will attract some nodes to synchronize with itself.
That is, for any node, its Ego-Leader has a greater probability of clustering together with the

2148 Cai et al.: Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

node (some nodes synchronize together). Hence, we consider the clustering relationship to be
a good metric for Ego-Leader. In this paper, the asymmetric edge clustering coefficient is
proposed as the metric to measure the capacity of a neighbor. In the following, we describe the
concept of an edge clustering coefficient, then present the asymmetric edge clustering
coefficient.

The notion of edge clustering coefficient originates in the research on community discovery
in complex networks [11]. It characterizes the closeness between the two end nodes of an edge
and the other nodes around them. The edges with higher clustering coefficients tend to hide in
the community structure of the network. This view has been proved in many works [12]. The
edge clustering coefficient is a measure that can both evaluate the importance of edges in the
network and describe how close an edge’s two end nodes are.

Definition 4 (Edge clustering coefficient): for an edge e(u,v) connecting node u and node v,
we observe how many other nodes adjoin both u and v. The edge clustering coefficient of e(u,v)
can be defined as

,(,)
(() 1, () 1)

u vz
ECC u v

min deg u deg v
=

− −
 (9)

where zu,v denotes the actual number of triangles in the network topology that include edge
e(u,v), deg(u) and deg(v) are degrees of node u and node v, respectively, and min(deg(u)-1,
deg(v)-1) is the maximum number of triangles containing edge e(u,v). When either end node (u
or v) is a leaf node, the edge clustering coefficient defaults to 0.

The traditional edge clustering coefficient is a symmetric local metric, ECC(u,v)=ECC(v,u),
but Ego-Leader is asymmetric. That is, node v may be in the Ego-Leader of node u when node
u is not in the Ego-Leader of node v. Therefore, the traditional edge clustering coefficient
cannot fully address the asymmetry of Ego-Leader. Therefore, we revise the traditional edge
clustering coefficient and propose an asymmetric edge clustering coefficient.

Definition 5 (Asymmetric edge clustering coefficient): for an edge e(u,v) connecting
node u and node v, the asymmetric edge clustering coefficient can be defined as.

,(,)
() 1
u vz

AECC u v
deg v

=
−

 (10)

The asymmetric edge clustering coefficient indicates the influence of node u on node v and
the degree of overlap in the two nodes’ neighbor sets. The higher AECC(u,v) is, the greater the
influence of node u on node v is. To illustrate AECC more clearly, let us take a simple example.
In Fig. 3, we try to calculate the AECC of the thick green edge e(6,0). n6 and n0 are the two
end nodes of edge e(6,0), and the degrees of these two nodes are 4 and 6, respectively. From
the figure, we can see that there are only two triangles (∆609 and ∆607) including the edge e(6,0).
Therefore, AECC(6,0)=2/(6-1)=0.4, and AECC(0,6)=2/(4-1)=0.67. That is, AECC(6,0) is not
equal to AECC(0,6), proving the asymmetric edge clustering coefficient is an asymmetric
local metric and completely meets the requirements of Ego-Leader.

2

4
8

7

69

5

3

1

0

Fig. 3. Example of 10-node and 23-edge graph.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018 2149

3.2 Ego-Leader and its features
In summary, we use the asymmetric edge clustering coefficient AECC to find the Ego-Leader
of any node in the network. So far, we have a clear understanding of the Ego-Leader of a node.
The Ego-Leader of a node consists of multiple neighbors having the greatest AECC value. In
addition, the number of nodes in a node’s Ego-Leader is never more than the number of
neighbors of the node. Hence, the Ego-Leader has the following important features.

(1) Ego-Leader is asymmetric.
This feature is very important and implies the intrinsic Leader-Follower relationship. The

importance of a Leader to its Followers is obviously greater than the importance of any
Follower to its Leader. Moreover, the proof for this feature is self-evident.

(2) Ego-Leader is local and static.
Proof: as we have shown, the Ego-Leader of a node comprises the nodes of greatest power

in its neighbor set. That is, any Ego-Leader only works for one node, and its scope of activity is
the neighbor set of the node. Therefore, the Ego-Leader is a local metric and strongly
dependent on the network topology. Because the network topology is static, the Ego-Leader of
a node is also static and does not incur any change.

In addition, this feature has been proved in many works [15-16].
(3) The centrality of Ego-Leader in its group is positively related to the objective

performance of that leader’s group.
This feature indicates that the greater the power of a group leader is, the greater the

probability that all members of this group cluster together. This feature has also been proved in
previous work [17].

3.3 Finding top-k level Ego-Leader
In this paper, the goal of introducing our Ego-Leader is to replace the traditional cohesion
parameter λ in determining the influence of an exclusive neighbor on distance. However, in
the traditional model, cohesion parameter λ has a useful feature. That is, by modulating the
cohesion parameter λ, the distance dynamics model allows analyzing the network’s
community structure from coarse to fine. With a higher value of λ, the distance dynamics
model yields more communities, while larger communities are produced with a lower value of
λ. To retain this feature, we use parameter k to dynamically adjust the number of objects in the
Ego-Leader of a node. Hence, we select the top-k level objects having greatest power from the
neighbor set to form the Ego-Leader of a node. When two neighbors have the same influence
(AECC) on a node, those two neighbors belong to the same level.

2

19

8

3

4

5

12

17

10

6

7

Neighbor Set of
node 6

Level-1 Leader Level-2 Leader

Fig. 4. Top-2 level Ego-Leader.

2150 Cai et al.: Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

To describe the top-k level Ego-Leader concept more clearly, let us take a simple example.
In Fig. 4, we try to find the top-2 level Ego-Leader for green node 6. We search the neighbor
set of node 6, as shown in the red dashed circle of Fig. 4. From the neighbor set, we find node
1 has the highest AECC value because there are 4 triangles (∆146, ∆156, ∆176, and ∆186)
containing edge e(1,6). Thus, the dark red node, 1, is the level-1 Ego-Leader of node 6.
Likewise, two light red nodes 5 and 7 have the second highest AECC value,
AECC(5,6)=AECC(7,6), because there are 3 triangles between node 5 (node 7) and node 6,
corresponding to ∆516, ∆546, ∆576 (or ∆716, ∆756, ∆786). Thus, the light red node 5 and node 7
comprise the level-2 Ego-Leader of node 6. That is, for node 6, the top-2 level Ego-Leader
includes node 1, node 5, and node 7.

By modulating k, we can easily adjust the scale of node Ego-Leaders, and this modified
distance dynamics model also allows analyzing network’s community structure from coarse to
fine. The higher the value of k is, the bigger the scale of Ego-Leader is, increasing the
probability that an exclusive neighbor yields positive influence and simultaneously increasing
the size of the community found by the distance dynamics model. Conversely, the model
produces more communities with a lower value of k. In contrast to the traditional cohesion
parameter λ, we find the top-k Ego-Leader has the following advantages.
 It makes the distance dynamics model more robust. Ego-Leader is local and common for

all networks, so it is not sensitive to different networks. Moreover, Ego-Leader is strongly
dependent on network topology, so it is more suitable than cohesion parameter λ for the
distance dynamics model and makes the model more robust.

 It is easier to obtain the best value of k. To get a perfect network community structure, we
need to get the best value of parameter k. For that, we only need to adjust the value of k
several times, generally fewer than 6, from top-3 to top-8. By contrast, to get the best value
of cohesion parameter λ for different networks requires a long period of constant, manual
adjustment of λ.

 It is easier to understand and accept. In contrast to traditional cohesion parameter λ,
Ego-Leader is easier to understand and accept in the distance dynamics model because the
synchronization dynamics process in the distance dynamics model has been regarded as
the Leader-Follower process in previous research [17-18].

 It is fast, and no extra time is required. Because the asymmetric edge clustering
coefficient is a local metric, the calculation speed of Ego-Leaders is very fast. Moreover,
the calculation of Ego-Leaders can be merged into the initial distance calculation phase of
the distance dynamics model, so no extra time is required for calculating the nodes’
Ego-Leaders.

In summary, the process of finding top-k level Ego-Leaders is very simple. First, each edge
of the network is scanned sequentially. For each node, we build a queue to sort the neighbors
according to their capacity. For edge e(u,v), the asymmetric edge clustering coefficients
AECC(u,v) and AECC(v,u) are calculated using Eq.10 to measure the influence of node u (or
node v) to node v (or node u). According to the value of AECC(u,v) (or AECC(v,u)), neighbor
u (or v) is stored into the queue of node v (or u) in descending order. Second, we judge
whether the AECCs of all neighbors of node u (node v) have been calculated. When the AECC
has been calculated for all neighbors of node u (or node v), the top-k level neighbors are
chosen from the queue of node u (or node v) as its Ego-Leader. When the value of k is greater
than the degree of node u (or node v), all neighbors are selected to form the Ego-Leader. Third,
when all edges of the network have been scanned, the process is over.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018 2151

3.4 Simplify validation
To validate the effectiveness of Ego-Leader, we select two classic networks to evaluate
whether Ego-Leader correctly determines the influence of an exclusive neighbor on distance,
thus replacing traditional cohesion parameter λ. Two networks, the Zachary’s karate club and
Dolphins networks, are publicly available from the UCI network data repository
(https://network data.ics.uci.edu/index.php). The process of validation is as follows. We
randomly sample 30 indirectly connected node pairs from the Zachary’s karate club network
and 100 indirectly connected node pairs from the Dolphins network. We label each indirectly
connected node pair as an exclusive neighbor pair because one node must be the exclusive
neighbor of another node in the pair. We use top-2 Ego-Leader and cohesion parameter λ
(λ=0.5) as two distinct ways to determine whether the two nodes of an exclusive neighbor pair
are similar. If two nodes in the exclusive neighbor pair are similar, the exclusive node will
produce a positive influence on distance. If the nodes are not similar, the exclusive node will
yield a negative influence on the distance.

Table 1. Validation of Ego-Leader on karate club network.

Exclusive
neighbor pair

Ego-Leader Cohesion parameter λ

first node second node similar Jaccard
distance λ similar

(23↔30) [29, 27] [8, 32] False 0.77 0.5 False
(23↔15) [29, 27] [32] False 0.71 0.5 False
(26↔9) [29] [2] False 0.8 0.5 False
(7↔13) [3, 1, 2] [3, 1, 2] True 0.42 0.5 True
(8↔12) [30, 32, 2] [3] False 0.88 0.5 False
(10↔6) [4, 5] [5, 16, 4] True 0.5 0.5 True
(10↔7) [4,5] [3, 1, 2] False 0.88 0.5 False
(12↔17) [3] [1] False 0.8 0.5 False
(13↔7) [3, 1, 2] [3, 1, 2] True 0.43 0.5 True
(17↔21) [0] [0] True 0.5 0.5 True

The first network is the well-known Zachary’s karate club network, which consists of 34

vertices and 78 undirected edges. Each node represents a member of the club, and each edge
represents a tie between two members. For convenience, Table 1 shows the results of only 10
exclusive neighbor pairs. From the table, we easily observe that Ego-Leader produces nearly
the same choices as cohesion parameter λ.

Table 2. Validation of Ego-Leader on Dolphins network.

Exclusive
neighbor pair

Ego-Leader Cohesion parameter λ

first node second
node similar Jaccard

distance λ similar

(33↔44) [14, 37, 16] [38, 20, 2] False 0.86 0.5 False
(23↔1) [51, 45] [27, 26, 54] False 0.92 0.5 False
(6↔5)) [13, 57, 9] [9, 13, 57] True 0.5 0.5 True
(40↔20) [14, 0, 37] [28, 16, 44] False 0.94 0.5 False

https://network/

2152 Cai et al.: Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

(41↔26) [54, 13, 57] [27, 25] False 0.89 0.5 False
(1↔57) [27, 26, 54] [13, 9, 6] False 0.81 0.5 False
(2↔30) [10, 42, 61] [47, 19, 28] False 0.9 0.5 False
(43↔0) [33, 38] [10, 47, 40] False 0.93 0.5 False
(15↔51) [24, 18] [18, 4, 11] True 0.43 0.5 True
(10↔20) [42, 0, 2] [28, 16, 44] False 0.93 0.5 False

The second network is the Dolphins network. It is an undirected social network based on the

frequent associations between 63 dolphins in a community living off Doubtful Sound (New
Zealand). Similar to the karate club network, Table 2 shows only the results of 10 exclusive
neighbor pairs. From the table, we can draw the same conclusion: Ego-Leader produces the
same or similar results as cohesion parameter λ.

Based on the above evaluations, we believe Ego-Leader can be introduced into the distance
dynamics model and replace traditional cohesion parameter λ to determine the influence of an
exclusive neighbor on distance.

4. E-Attractor: Enhanced Distance Dynamics Model for Community
Detection via Ego-Leader

In this section, we describe an enhanced distance dynamics model based on Ego-Leader. Then,
based on the enhanced model, we present a corresponding community detection algorithm
called E-Attractor.

4.1 Enhanced distance dynamics model
In the traditional distance dynamics model, three interaction patterns (DI, CI, and EI) are used
to simulate the distance dynamics. The details are provided in Section 2. In contrast to the
traditional model, our enhanced distance dynamics model introduces Ego-Leader to replace
the cohesion parameter λ. More specifically, the top-k Ego-Leader of each node is used to
determine whether two indirectly connected nodes are similar and to decide the influence of an
exclusive neighbor on distance. Because the traditional DI and CI patterns do not use cohesion
parameter λ, these two patterns are unchanged in our enhanced model. We only improve the EI
pattern via Ego-Leader.

New Pattern 3: Influence from exclusive neighbors. The influence from the exclusive
neighbors is the third interaction pattern. In the exclusive neighbor sets EN(u)=N(u)- (N(u)
∩N(v)) and EN(v)=N(v)- (N(u) ∩N(v)), each node only connects to one end node, u or v, of
edge e(u,v) (please see Fig.2 (d)). Each exclusive neighbor and corresponding indirectly
connected end node form an exclusive neighbor pair. In the interaction process, each exclusive
neighbor will only attract the node connected with it (node u or node v). However, we do not
know whether another node (indirectly connected node) will be close to the exclusive
neighbor. To determine the positive or negative influence of an exclusive neighbor on distance
d(u,v), Ego-Leader is used and defined as:

()
()() () ()
()()

 1 , 0
,

1 , otherwise
k kd x v EgoL x EgoL v

x u
d x v

s
 − ≥= 
− −



 (11)

In the above equation, EgoLk(x) is the top-k Ego-Leader of node x. The function σ(x,u) not
only indicates the direction of influence (positive or negative) of exclusive neighbor x on
distance but also shows the strength of this influence. Hence, the new third interaction pattern,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018 2153

NEI, is defined as:
()() ()

()()

()() ()
()()

1 , , 1 , ,

x EN u y EN v

f d x u x u f d y v y v
NEI

deg u deg v
σσ

∈ ∈

   − ⋅ − ⋅
= − −      

   
∑ ∑ (12)

Finally, considering the three interaction patterns together, the dynamics of distance d(u,v)
between nodes u and v over time is governed by:

() () () () (), , 1 , ,d u v t d u v t DI t CI t NEI t+ = + + + (13)
where d(u,v,t+1) is the new distance at time step t+1. DI(t), CI(t) and NEI(t) indicate three

different influences from two directly linked nodes, common neighbors, and exclusive
neighbors, respectively.

4.2 E-Attractor algorithm
In this section, we give a comprehensive description of the E-Attractor algorithm. The
E-Attractor process is very simple, consisting mainly of the following three steps.

1. At the start time (t=0), without any interaction, each edge is associated with an initial
distance using the Jaccard-distance function (Eq.2 or Eq.3). At the same time, the two
asymmetric edge clustering coefficients of each edge are calculated and stored into the
queues of their respective end nodes. When all neighbors of an end node have been
calculated, then the top-k level Ego-Leaders are chosen to form the Ego-Leader set. More
detail is provided in Section 3.

2. The dynamic interaction process is initiated. As time evolves, driven by the network
topology, each distance changes gradually under the influence of three different
interaction patterns (DI, CI, and NEI). In particular, the nodes with higher similarity
synchronize faster, and the distances between these nodes decrease faster. At the same
time, the nodes with higher dissimilarity separate faster, and the distances between these
nodes increase faster. After multiple time steps, all distances converge, either to 0 or 1,
ending the dynamic interaction process.

3. After the dynamic interaction process, the community structure of the network is naturally
detected by removing all edges with a distance value of 1.

4.3 Time complexity
The time complexity of E-Attractor is two-fold. First, each edge is associated with an initial
distance, and the Ego-Leader of each node is calculated. Therefore, the time complexity is
O(|E|), where |E| is the number of edges. Second, a dynamic interaction process is executed
with T time steps. Thus, time complexity of this process is O(T*U*|E|), where U is the average
number of exclusive neighbors of two linked nodes. In total, the time complexity of
E-Attractor is O(|E|+T*U*|E|).

5. Experimental Evaluation

5.1 Evaluation Setup
Comparison Algorithms. To evaluate the performance of the E-Attractor algorithm, we
select five representative community detection algorithms as competitors. All comparison
algorithms are listed in Table 3, where the InfoMap, FastGreedy and Louvain algorithms are
considered to be the best algorithms for disjoint community detection [3,21], the LPA
algorithm has a high speed, and the Attractor algorithm is a native algorithm built on the
distance dynamics model. For all community detection algorithms, recommended parameter

2154 Cai et al.: Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

defaults are used to get the best experimental results.

Table 3. Comparison Algorithms.

Algorithm Full Name Implement

InfoMap [19] Maps of random walks on complex networks reveal community
structure. Python

FastGreedy [13] Finding community structure in very large networks. Python
LPA [24] Label propagation through linear neighborhoods. Python
Louvain [14] Fast unfolding of communities in large networks. Python
Attractor [10] Community Detection based on Distance Dynamics. Python

E-Attractor Enhanced distance dynamics model for community detection
via Ego-Leader. Python

Evaluation metrics. To extensively compare different community detection algorithms

with respect to effectiveness, we select two widely used metrics to evaluate the cluster quality.
(1) The first metric is Normalized Mutual Information (NMI) [23], which is defined in the
context of classical clustering to compare two different partitions of one dataset by measuring
how much information they have in common. (2) The second metric is the popular Adjusted
Rand index [22]. It calculates the total number of pairs that belong to the same cluster, or to
different clusters, comparing expected clusters and clustering results. All metrics scale
between 0 and 1 for a random or a perfect clustering result, respectively.

Experimental Platform. As the experimental platform, we rented a high-performance
server (IBM x3650 m4) from National Super Computing Center of Changsha, located in
Hunan province, China. The server comprises one CPU with 8 cores (Intel Xeon Processor
E5-2603) and 16GB main memory. All algorithms are run on the high-performance server
using the Windows server 2012 operating system. The E-Attractor and Attractor algorithm are
implemented in Python. For the other four algorithms, we have downloaded the Python
implementations from the official websites of the corresponding authors.

5.2 Sensitivity of parameter k
The first objective of experimental evaluation is to observe and validate the sensitivity of
parameter k in the top-k Ego-Leader. Parameter k is defined to determine the scale of the
nodes’ Ego-Leaders and, further, to decide the direction of the influence of an exclusive
neighbor on the distance: positive influence or negative influence. Generally, when parameter
k has higher value, each node has more members in its Ego-Leader, an exclusive neighbor has
a larger probability of exerting a positive influence, and the E-Attractor algorithm yields
bigger communities. Conversely, with lower k, each node has fewer Ego-Leader members, an
exclusive neighbor is more likely to exert a negative influence, and E-Attractor yields more
communities. By modulating parameter k, E-Attractor allows analyzing network community
structure from coarse to fine. Moreover, parameter k is robust and easy to tune. To evaluate the
sensitivity of parameter k, we adopt the Jazz network as the experimental dataset and observe
the change in community structure when modifying the value of k gradually.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018 2155

(a) C# vs k (b) k = 1 (c) k = 2

(d) k = [3 - 4] (e) k = 5 (f) k = [6 - 10]

Number of Ego-Leader k

N
um

be
r

of
 C

om
m

un
iti

es

 Fig. 5. Top-2 level Ego-Leader Sensitivity of parameter k on Jazz network.

The Jazz network is a collaboration network used by jazz musicians. Each node represents a
jazz musician, and an edge connects two musicians who have played together in a band. The
network was collected in 2003. Fig. 5 (a) plots the number of communities for k ranging from
1 to 10. The resulting community structures of the Jazz network with respect to distinct
parameters are further illustrated in Fig. 5 (b) to Fig. 5 (f). As shown in the plot, when the
value of k is smaller, E-Attractor yields more communities. Conversely, E-Attractor yields
larger communities with higher values of k. Moreover, we can see that E-Attractor yields a
perfect partitioning with parameter k over a long stable range (2 - 5).

We also carry out numerous experiments on several synthetic networks to observe the
resulting changes in communities discovered. Based on extensive experiments, we find that
E-Attractor usually produces a good clustering result within the range k=[3-8]. Moreover,
compared with the native Attractor algorithm requiring cohesion parameter λ, E-Attractor
with parameter k is more robust. E-Attractor only needs to adjust parameter k 1~6 times to
obtain a perfect partitioning of different networks, but Attractor needs to adjust parameter λ
8~60 times to obtain a perfect partitioning of different networks. We set parameter k=5 as the
default value in the following experiments.

5.3 Synthetic network

(1) Network generation

To compare the performance of various community detection algorithms, we use the LFR
benchmark to generate several synthetic networks featuring distinct characteristics. The LFR
benchmark generation model is defined as LFR(C#, Cs, Kmax, μ), where C# indicates the
number of communities; Cs represents the number of nodes in one community; Kmax means the
maximum degree of a node; and μ is the mixing parameter indicating the fraction of a node’s
links outside its community, which is used to control the difficulty of community separation.

2156 Cai et al.: Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

Table 4. Synthetic network.

Network Node Edge Average degree u Kmax Cs C#
LFR1 140 917 13.1 0.25 18 50 4
LFR2 691 5071 14.7 0.25 18 100 8
LFR3 3180 33696 21.2 0.2 25 200 20
LFR4 3746 39011 20.8 0.2 25 100 50
LFR5 31194 141785 9.0 0.15 12 500 80
LFR6 30382 137955 9.0 0.2 12 500 120
LFR7 42170 271326 12.9 0.15 15 300 180
LFR8 59662 373362 12.5 0.1 15 300 250

Based on these four parameters, eight synthetic networks with ground-truth are generated,

as listed in Table 4. For fair comparison, the eight synthetic networks have different network
scale, community numbers (C#), average node degrees, and number of noise edges. The
purpose of this generating scheme is to make synthetic networks that are more consistent with
real-world networks. By modulating parameters C# and Cs, we cause each synthetic network
to have a different network scale (nodes and edges) and community numbers (C#). Modulating
parameter Kmax gives each synthetic network a different average node degree. Modulating
parameter μ gives each synthetic network a different number of noise edges in each
community.

(2) Community detection performance

The second objective of experimental evaluation is to test the community detection
performance of various algorithms on LFR synthetic networks, based on NMI, ARI, and
computation time.

N
M

I

AR
I

(b) ARI vs Networks(a) NMI vs Networks
Fig. 6. Community detection performance of different algorithms on LFR networks.

Fig. 6 plots the community detection performance of various algorithms on LFR synthetic
networks with respect to two distinct metrics. Fig. 6 (a) shows the respective NMI values, and
Fig. 6 (b) shows the respective ARI values of the tested algorithms. From Fig. 6, we make the
following observations. (1) For the NMI, the six community detection algorithms have good
results, defined as an average value of NMI greater than 0.6. Comparing the six algorithms, we
observe that the E-Attractor, Attractor, and Louvain algorithms have the best results and
stability; the InfoMap algorithm is next; the FastGreedy and LPA algorithms are the worst. (2)
For the ARI, the trend lines of the six algorithms are very uneven and imply the performance

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018 2157

of the algorithms is very unstable on different LFR networks. For instance, on the high noise
networks (LRF-1~LFR-4, parameter u≥0.2), the ARI fluctuation is obvious for all six
algorithms, where E-Attractor and Louvain are best, Attractor and InfoMap are next, and
FastGreedy and LPA are worst. On the low noise networks (LRF-5~LFR-8, parameter u<0.2),
Louvain and InfoMap are best, E-Attractor and Attractor are next, and LPA and FastGreedy
are worst. (3) Merging NMI and ARI together, we see that the E-Attractor algorithm can
perform better than the other five algorithms on the high noise networks (LFR-1~LFR-4). On
the low-noise networks (LFR-5~LFR-8), the performance of the E-Attractor algorithm is
poorer than that of the Louvain and InfoMap algorithms, but better than that of the Attractor,
LPA, and FastGreedy algorithms.

Table 5. Computation time of various algorithms on LFR networks (ms).

Network LFR-1 LFR-2 LFR-3 LFR-4 LFR-5 LFR-6 LFR-7 LFR-8
FastGreedy 803 4294 23095 24170 122141 101517 195473 244056
InfoMap 500 3738 19175 20002 86473 84012 142374 187721
Louvain 129 329 12143 1357 6029 5679 9521 13608
LPA 57 127 489 501 2316 2143 3897 5327
Attractor 575 3157 16608 17564 75561 73697 121124 165086
EAttractor 792 3938 20312 21197 90875 89414 149021 205881

Table 5 lists the computation time of the six algorithms on the LFR networks. As shown in

Table 5, the computation time of the LPA algorithm is least, followed by the Louvain
algorithm, then InfoMap, Attractor, and E-Attractor are next and have very similar times;
FastGreedy is slowest. Contrasting the LPA and InfoMap algorithms, we observe that the
computation time of InfoMap is close to 30~40 times that of LPA. Moreover, focusing on the
Attractor, InfoMap and E-Attractor algorithms, the computation time of InfoMap is bigger
than that of Attractor but smaller than that of E-Attractor.

5.4 Real-world network

(1) Network selection

To further evaluate the performance of the various community detection algorithms, we
choose six typical real-world networks with ground-truth for more experiments, as listed in
Table 6. All chosen real-world networks are publicly available from the UCI network data
repository (https://networkdata. ics.uci.edu/index.php) and Stanford large network dataset
collection (http://snap.stanford.edu/data/). The six real-world networks belong to different
network types, where karate is a social network, polbooks is a book network, adjnoun is a
word association network, football is a football network, polblogs is a blog network, and
DBLP is a collaboration network. Moreover, the six real-world networks have varying
network density, where karate, adjnoun, and DBLP are sparse networks, and football,
polbooks and polblogs are dense networks.

Table 6. Real-world networks.

Network Node Edge Average degree Network type
karate 34 78 4.6 Social

http://snap.stanford.edu/data/

2158 Cai et al.: Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

polbooks 105 441 8.4 Book
adjnoun 112 425 7.6 Word
football 115 613 10.7 Football
polblogs 1490 19090 22.4 Weblogs
DBLP 317080 1049866 6.6 Collaboration

(2) Community detection performance

The third objective of experimental evaluation is to test the community detection performance
of various algorithms on real-world networks, based on NMI, ARI, and computation time.

N
M

I

AR
I

(b) ARI vs Networks(a) NMI vs Networks
Fig. 7. Community detection performance of different algorithms on real-world networks.

Fig.7 shows the community detection performance of six algorithms on real-world
networks, where Fig.7 (a) plots the NMI results, and Fig.7 (b) plots the ARI results. From
Fig.7, we make the following observations. (1) For the NMI, the six algorithms display
different benefits. Of the six algorithms, E-Attractor and Louvain generally provide the best
NMI, followed by InfoMap, Attractor, and LPA, with FastGreedy performing most poorly.
Moreover, the E-Attractor, Attractor and Infomap algorithms are more stable than the other
three algorithms. (2) With respect to the ARI, the trend lines of the six algorithms fluctuate
widely, and the average ARI value is less than 0.5 for all six algorithms. Overall, the ARI
values of E-Attractor and Louvain are better than those of the other four algorithms. (3) When
we consider NMI and ARI together, E-Attractor, Attractor and Louvain clearly perform better
than InfoMap, LPA and FastGreedy on both the high density real-world networks (football,
polblogs and polbooks) and the sparse real-world networks (karate, adjnoun and DBLP).
Focusing on the three better algorithms, the average NMI and ARI of E-Attractor are slightly
better than those of Louvain and Attractor.

Table 7. Computation time of various algorithms on real-world networks (ms).

Network karate polbooks adjnoun football polblogs DBLP
FastGreedy 339 1139 1289 1689 31977 6666447
InfoMap 228 928 941 1021 21756 3766891
Louvain 28 199 207 248 6987 250974
LPA 12 129 133 141 3427 110889
Attractor 241 991 1017 1145 22147 3910124
E-Attractor 292 1035 1264 1406 29520 4359569

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018 2159

Table 7 shows the computation times of the six algorithms on the real-world networks. As
shown in Table 7, LPA has the smallest computation time, Louvain is second, Attractor,
InfoMap and E-Attractor are virtually tied for third, and FastGreedy requires the most
computation time. Focusing on E-Attractor, InfoMap and Attractor, we observe that the
computation time of Attractor is smaller than that of E-Attractor and larger than that of
InfoMap.

6. Conclusion
This paper presents the design of an enhanced distance dynamics model based on Ego-Leader
and proposes a corresponding community detection algorithm, E-Attractor. The paper’s
contributions have two primary aspects. One, to remove the strong dependence of the distance
dynamics model on cohesion parameter λ, the Ego-Leader is introduced to replace parameter λ
in determining the influence of an exclusive neighbor on distance. Two, based on Ego-Leader,
we design an enhanced distance dynamics model with better robustness. Using the new model,
we propose a corresponding community detection algorithm, E-Attractor. Extensive
experiments have been executed on both synthetic networks and real-world networks. The
experimental results show the benefits of our algorithm.

Acknowledgement
This work was supported by the National Natural Science Foundation of China
(61573299,61174140, 61472127, 61272395); Social Science Foundation of Hunan
Province(16ZDA07); China Postdoctoral Science Foundation (2013M540628,2014T70767);
Natural Science Foundation of Hunan Province (14JJ3107); Excellent Youth Scholars Project
of Hunan Province (15B087).

References
[1] Fortunato S and Hric D, “Community detection in networks: A user guide,” Physics Reports,

vol.659, no.11, pp.1-44, November, 2016. Article (CrossRef Link).
[2] Papadopoulos S, Kompatsiaris Y, Vakali A and Spyridonos P, “Community detection in social

media,” Data Mining and Knowledge Discovery, vol.24, no.3, pp.515-554, May, 2012.
Article (CrossRef Link).

[3] Fortunato S, “Community detection in graphs,” Physics reports, vol.486, no.3, pp.75-174,
February, 2010. Article (CrossRef Link).

[4] Böhm C, Plant C, Shao J and Yang Q, “Clustering by synchronization,” in Proc. of 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp.583-592, July
25-28, 2010. Article (CrossRef Link).

[5] Shao J, Plant C, Yang Q and Bohm C, “Detection of arbitrarily oriented synchronized clusters in
high-dimensional data,” in Proc. of 11th International Conference on Data Mining, pp.607-616,
December 11-14, 2011. Article (CrossRef Link).

[6] Xiong Y, Zhu Y, Philip S Y and Jian Pei, “Towards Cohesive Anomaly Mining,” in Proc. of 27th
AAAI Conference on Artificial Intelligence, pp.984-990, July 14-18, 2013.
Article (CrossRef Link).

[7] Shao J, Ahmadi Z and Kramer S, “Prototype-based learning on concept-drifting data streams,” in
Proc. of 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp.412-421, August 24-27, 2014. Article (CrossRef Link).

https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1007/s10618-011-0224-z
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1145/1835804.1835879
https://doi.org/10.1109/ICDM.2011.50
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/viewFile/6109/7315
https://doi.org/10.1145/2623330.2623609

2160 Cai et al.: Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

[8] Novikov A and Benderskaya E, “Oscillatory Network Based on Kuramoto Model for Image
Segmentation,” in Proc. of International Conference on Parallel Computing Technologies, pp.
210-221, August 21-30, 2015. Article (CrossRef Link).

[9] Hong L, Cai S M, Zhang J and Zhuo Z, “Synchronization-based approach for detecting functional
activation of brain,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.22, no.3, pp.
113-128, August, 2012. Article (CrossRef Link).

[10] Shao J, Han Z, Yang Q and Zhou T, “Community detection based on distance dynamics,” in Proc.
of 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp.1075-1084, August 10-13, 2015. Article (CrossRef Link).

[11] Wang J, Li M, Wang H and Pan Y, “Identification of essential proteins based on edge clustering
coefficient,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.9, no.4,
pp.1070-1080, November, 2012. Article (CrossRef Link).

[12] Radicchi F, Castellano C, Cecconi F and Loreto V, “Defining and identifying communities in
networks,” in Proc. of Proceedings of the National Academy of Sciences of the United States of
America, vol.101, no.9, pp.2658-2663, January, 2004. Article (CrossRef Link).

[13] Clauset A, Newman M E and Moore C, “Finding community structure in very large networks,”
Physical Review E, vol.70, no.6 Pt 2, pp.264-277, December, 2004. Article (CrossRef Link).

[14] Blondel V D, Guillaume J L, Lambiotte R and Lefebvre E, “Fast unfolding of communities in large
networks,” Journal of Statistical Mechanics Theory & Experiment, vol.2008, no.10, pp.155-168,
October, 2008. Article (CrossRef Link).

[15] Jalan S, Singh A, Acharyya S and Kurths J, “Impact of a leader on cluster synchronization,”
Physical Review E, vol.91, no.2, pp.22-34, February, 2015. Article (CrossRef Link).

[16] Goyal A, Bonchi F and Lakshmanan LVS, “Discovering leaders from community actions,” in Proc.
of 17th ACM conference on Information and knowledge management, pp.499-508, October 26-30,
2008. Article (CrossRef Link).

[17] Mehra A, Dixon AL, Brass DJ and Robertson B, “The social network ties of group leaders:
Implications for group performance and leader reputation,” Organization science, vol.17, no.1, pp.
64-79, February, 2006. Article (CrossRef Link).

[18] Wang J, Ma Q and Zeng L, “Observer-based synchronization in fractional-order leader–follower
complex networks,” Nonlinear Dynamics, vol.73, no.2, pp.921-929, March, 2013.
Article (CrossRef Link).

[19] Rosvall M and Bergstrom CT, “Maps of random walks on complex networks reveal community
structure,” in Proc. of Proceedings of the National Academy of Sciences, vol.105, no.4,
pp.1118-1123, January, 2008. Article (CrossRef Link).

[20] Gower JC, “Measures of similarity, dissimilarity and distance,” Encyclopedia of statistical
sciences, vol.5, no.3, pp.397-405, July, 1985. Article (CrossRef Link).

[21] Mark EJ Newman, “Modularity and community structure in networks,” in Proc. of Proceedings of
the National Academy of Sciences, vol.103, no.23, pp.8577–8582, May, 2006.
Article (CrossRef Link).

[22] William M Rand, “Objective criteria for the evaluation of clustering methods,” Journal of the
American Statistical association, vol.66, no.336, pp.846–850, April, 1971.
Article (CrossRef Link).

[23] Alexander Strehl and Joydeep Ghosh, “Cluster ensembles-a knowledge reuse framework for
combining multiple partitions,” The Journal of Machine Learning Research, vol.3, no.12,
pp.583–617, December, 2003. Article (CrossRef Link).

[24] Wang F and Zhang C, “Label propagation through linear neighborhoods,” IEEE Transactions on
Knowledge and Data Engineering, vol.20, no.1, pp.55-67, November, 2008.
Article (CrossRef Link).

https://doi.org/10.1007/978-3-319-21909-7_20
https://doi.org/10.1063/1.4747710
https://doi.org/10.1145/2783258.2783301
https://doi.org/10.1109/TCBB.2011.147
https://doi.org/10.1073/pnas.0400054101
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1103/PhysRevE.91.022901
https://doi.org/10.1145/1458082.1458149
https://doi.org/10.1287/orsc.1050.0158
https://doi.org/10.1007/s11071-013-0843-6
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1002/0471667196.ess1595.pub2
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1080/01621459.1971.10482356
https://dl.acm.org/citation.cfm?id=777110
https://doi.org/10.1109/TKDE.2007.190672

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018 2161

Cai LiJun received the Ph.D. degree in College of Information Science and Engineering
from Hu Nan University in 2007. He is currently a Professor at Hu Nan University. His
research interests include bioinformatics, cloud computing, big data scheduling and
management.

Zhang Jing received the Ph.D. degree in College of Electrical and Information Engineering
from Hu Nan University in 1997. He is currently a Professor at Hu Nan University. His
research interests include complex process control and optimization.

Chen Lei received the M.S. degree in College of Information Science and Engineering from
Hu Nan University, Changsha, China. He is currently pursuing the Ph.D. degree in the
College of Electrical and Information Engineering, Hu Nan University, Changsha, China. His
research interests include date mining, cloud computing, big data scheduling and analysis.

He TingQin received the M.S. degree in College of Information Science and Engineering
from Hu Nan University, Changsha, China. He is currently pursuing the Ph.D. degree in the
College of Information Science and Engineering, Hu Nan University, Changsha, China. His
research interests include date mining, pattern recognition.

