• Title/Summary/Keyword: Relative Displacement Meter

Search Result 7, Processing Time 0.021 seconds

Development of a Circular Displacement Meter (원형 변위계 개발)

  • Nakhoon Shim;Ikchang Choi
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.209-215
    • /
    • 2024
  • Generally, a straight displacement meter is used to obtain displacement data to verify the safety of structural members and structures. A straight displacement meter is also used to measure the absolute displacement in research laboratories or safety inspection sites such as bridges and buildings. In this study, for structures in which the displacement sensor could not be fixed at the location where the displacement was to be measured, a circular displacement meter was manufactured to measure the displacement by installing a displacement gauge on the structure itself. In other words, when measuring the horizontal displacement of an upper part, such as a wind tower, a circular displacement meter was installed inside the wind tower to integrate it with the structure, applying the principle that the structure itself can be used as a displacement meter. This circular displacement meter can be installed and used inside a circular structure. Whereas in the case of a telephone pole, it can be installed outside to measure displacement. It can be manufactured in various sizes and used.

Shock analysis of a new ultrasonic motor subjected to half-sine acceleration pulses

  • Hou, Xiaoyan;Lee, Heow Pueh;Ong, Chong Jin;Lim, Siak Piang
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.357-370
    • /
    • 2016
  • This paper aims to examine the dynamic response of a newly designed ultrasonic motor under half-sine shock impulses. Impact shock was applied to the motor along x, y or z axis respectively with different pulse widths to check the sensitivity of the motor to the shocks in different directions. Finite Element Analysis (FEA) with the ANSYS software was conducted to obtain the relative displacement of a key point of the motor. Numerical results show that the maximum relative displacement is of micro meter level and the maximum stress is five orders smaller than the Young's modulus of the piezo material, which proves the robustness of the motor.

Vibration response of saturated sand - foundation system

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Ameri, Abbas F.I.
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.83-107
    • /
    • 2016
  • In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated parameters of the soil condition include dry and saturated sand for two relative densities; 30 % and 80 %. The dynamic loading was applied at different operating frequencies. The response of the footing was elaborated by measuring the amplitude of displacement using the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside soil media by using piezoelectric sensors. It was concluded that the final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it decreases with increasing the relative density of sand, modulus of elasticity and embedding inside soils. The maximum displacement amplitude exhibits its maximum value at the resonance frequency, which is found to be about 33.34 to 41.67 Hz. In general, embedment of footing in sandy soils leads to a beneficial reduction in dynamic response (displacement and excess pore water pressure) for all soil types in different percentages accompanied by an increase in soil strength.

Experimental Analysis of Corbel Part Behaviour in Inground LNG Storage Tank (지하식 저장탱크 Corbel부 실험적 거동 분석)

  • Yoon I.S.;Kim J.K.;Kim Y.K.;Kim J.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.56-60
    • /
    • 2006
  • The connection part (corbel) between bottom slab and side wall in inground LNG storage tank has hinge conditions partly fixed by using anchor bars to reduce stress concentration. The corbel deforms in both radial and vertical directions under load conditions of the LNG tank such as LNG temperature, hydraulic pressure, etc. Membrane is an important part from the viewpoint of design because the deformation of the corbel is transformed directly to the membrane and superposed with other deformations. Behavior of the corbel has been investigated through various sensors to measure temperature, load and displacement. And the test data have been compared with finite element results analysis to propose a more reasonable design of LNG storage tank.

  • PDF

Bearing capacity of a Flysch rock mass from the characterization of the laboratory physical properties and the Osterberg test

  • Hernan Patino;Ruben A. Galindo
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.573-594
    • /
    • 2024
  • This article presents a research study, with both laboratory and field tests, of a deep foundation in a markedly anisotropic medium. Particularly it has focused on the evaluation of the behavior of a pile, one meter in diameter, embedded in a rocky environment with difficult conditions, in the Flysch of the Spanish city of San Sebastián. To carry out the research, the site of a bridge over the Urumea River was chosen, which was supported by pre-excavated reinforced concrete piles. 4 borings were carried out, by the rotation and washing method, with continuous sampling and combined with flexible dilatometer tests. In the field, an Osterberg load test (O-cell) was performed, while in the laboratory, determinations of natural moisture, natural unit weight, uniaxial compressive strength (UCS), point load strength (PLS), compressive wave propagation velocity (Vc) and also triaxial and direct shear tests were carried out. The research results indicate the following: a) the empirical functions that correlate the UCS with the PLS are not always linear; b) for the studied Flysch it is possible to obtain empirical functions that correlate the UCS with the PLS and with the Vc; c) the bearing capacity of the studied Flysch is much greater than if it is evaluated by different load capacity theories; d) it is possible to propose an empirical function that allows evaluating the mobilized shear strength (τm), as a function of the UCS and the displacement relative of the pile (δr).

Development of a Metrological Atomic Force Microscope for the Length Measurements of Nanometer Range (나노미터 영역 길이 측정 위한 미터 소급성을 갖는 원자간력 현미경 개발)

  • 김종안;김재완;박병천;엄태봉;홍재완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.75-82
    • /
    • 2004
  • A metrological atomic force microscope (M-AFM) was developed fur the length measurements of nanometer range, through the modification of a commercial AFM. To eliminate nonlinearity and crosstalk of the PZT tube scanner of the commercial AFM, a two-axis flexure hinge scanner employing built-in capacitive sensors is used for X-Y motion instead of PZT tube scanner. Then two-dimensional displacement of the scanner is measured using two-axis heterodyne laser interferometer to ensure the meter-traceability. Through the measurements of several specimens, we could verify the elimination of nonlinearity and crosstalk. The uncertainty of length measurements was estimated according to the Guide to the Expression of Uncertainty in Measurement. Among several sources of uncertainty, the primary one is the drift of laser interferometer output, which occurs mainly from the variation of refractive index of air and the thermal stability. The Abbe error, which is proportional to the measured length, is another primary uncertainty source coming from the parasitic motion of the scanner. The expanded uncertainty (k =2) of length measurements using the M-AFM is √(4.26)$^2$+(2.84${\times}$10$^{-4}$ ${\times}$L)$^2$(nm), where f is the measured length in nm. We also measured the pitch of one-dimensional grating and compared the results with those obtained by optical diffractometry. The relative difference between these results is less than 0.01 %.

Mechanism of Seismic Earth Pressure on Braced Excavation Wall Installed in Shallow Soil Depth by Dynamic Centrifuge Model Tests (동적원심모형실험을 이용한 얕은 지반 굴착 버팀보 지지 흙막이 벽체의 지진토압 메커니즘 분석)

  • Yun, Jong Seok;Park, Seong Jin;Han, Jin Tae;Kim, Jong Kwan;Kim, Dong Chan;Kim, DooKie;Choo, Yun Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.193-202
    • /
    • 2023
  • In this paper, a dynamic centrifuge model test was conducted on a 24.8-meter-deep excavation consisting of a 20 m sand layer and 4.8 m bedrock, classified as S3 by Korean seismic design code KDS 17 10 00. A braced excavation wall supports the hole. From the results, the mechanism of seismically induced earth pressure was investigated, and their distribution and loading points were analyzed. During earthquake loadings, active seismic earth pressure decreases from the at-rest earth pressure since the backfill laterally expands at the movement of the wall toward the active direction. Yet, the passive seismic earth pressure increases from the at-rest earth pressure since the backfill pushes to the wall and laterally compresses at it, moving toward a passive direction and returning to the initial position. The seismic earth pressure distribution shows a half-diamond distribution in the dense sand and a uniform distribution in loose sand. The loading point of dynamic thrust corresponding with seismic earth pressure is at the center of the soil backfill. The dynamic thrust increased differently depending on the backfill's relative density and input motion type. Still, in general, the dynamic thrust increased rapidly when the maximum horizontal displacement of the wall exceeded 0.05 H%.