• Title/Summary/Keyword: Reinforcement of ground

Search Result 617, Processing Time 0.027 seconds

Distance between the Parallel Shield tunnel and Application (병렬 쉴드터널의 이격거리와 적용사례)

  • Kwak Chul-Hong;Kim Jae-Young;Kim Dong-Hyun;Lee Du-Hwa;Lee Seung-Bok;Kim Eung-Tae;Shim Jai-Beom
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.225-232
    • /
    • 2005
  • The construction of parallel tunnel by using the shield TBM method was increased recently. Accordingly the application and the propriety of the parallel shield TBM tunnels were studied through domestic and foreign construction cases herein. Also the behavior of tunnel structure and ground was evaluated by a numerical analysis with various ground conditions and the distance between the parallel tunnels. As a result, it was concluded that a deep investigation as well as a ground reinforcement was required with a ratio(L/D) of the distance between the parallel tunnels(L) to tunnel outer diameter(D) less than 0.5 because the Interference phenomenon was expected to occur. And the appropriateness of the application method of parallel shield TBM tunnel was validated through the 2-dimensional numerical analysis simulated the process of excavation after the ground reinforcement in the starting area of the OOO construction site with the ratio(L/D) of 0.35.

  • PDF

Application of the auxiliary tunnel reinforcement design using the decision making tools based on expert system integrated fuzzy inference rule

  • Kim Changyong;Hong Sungwan;Bae Gyujin;Kim Kwangyeom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.262-271
    • /
    • 2003
  • Specification of reinforcement method was suggested according to the ground condition and tunnelling environment such as adjacent building and surface settlement. Tunnel database consists of 8 different groups of data according to the tunnel construction situations and major problems of ground. A tunnel countermeasure expert system based on client/server system was developed with on-line. The expert system provides proper solution to the each construction sites backing up the information of the tunnelling and ground information through Internet. The effective factors of tunnel construction were shown by the analyzing relationship and partial relationship between face stability and RMR factors. This study will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system escaping from the dependence of some experienced experts for the absent of guide.

  • PDF

A Case Study on the Reinforcement Method of Subway Tunnel (도심지 지하철 터널의 지반보강공법 시공사례 연구)

  • 천병식;여유현;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.201-208
    • /
    • 1999
  • The NATM(New Austrian Tunnelling Method) has been used for tunnelling since 1980's. But Collapses of tunnel under construction take place frequently, especially at urban areas because of adjacent buildings, underground conduits and traffic loads. This paper is a case study on the reinforcement method of subway tunnel at urban areas. In this study, ground inspection, geological investigation, laboratory test and numerical analysis by means of FDM program were carried out. The tunnel excavation was stopped because of over excessive brake of tunnel crown and shotcrete was installed to prevent deformation of adjacent ground as the temporary method. From the result of field survey and geological investigation, it is found that the soft weathered soil was distributed to the ground of tunnel invert unlike original investigation. The results of the analysis and the study show that the SGR(Space Grouting Rocket) method and Umbrella method can be applied for the stability of tunnel excavation and in addition the reinforcement of concrete lining is required for long-term stability of tunnel.

  • PDF

A study on the effect of the pile tip deformations on the pile behaviour to shield TBM tunnelling (Shield TBM 터널시공으로 유발된 말뚝선단의 변형이 말뚝거동에 미치는 영향에 대한 연구)

  • Young-Jin Jeon;Byung-Soo Park;Young-Nam Choi;Cheol-Ju Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.169-189
    • /
    • 2024
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles and pile groups to adjacent Shield TBM tunnelling by considering various reinforcement conditions. The numerical modelling has analysed the effect of the pile cutting, ground reinforcement and pile cap reinforcement. The analyses concentrate on the ground settlements, the pile head settlements, the axial pile forces and the shear stress transfer mechanism at the pile-soil interface. In all cases of the pile tips supported by weathered rock, the distributions of shear stresses presented a similar trend. Also, when the pile tips were cut, tensile forces or compressive forces were induced on the piles depending on the relative positions of the piles. Furthermore, when the pile tips are supported by weathered rock, approximately 70% of the load is supported by surface friction, and only the remaining 30% is supported by the pile tip. Furthermore the final settlement of the piles without reinforcement showed approximately 70% more settlement than the piles for which ground reinforcement is considered. It has been found that the ground settlements and the pile settlements are heavily affected by the pile cutting and reinforcement conditions. The behaviour of the single pile and group piles, depending on the pile cutting, conditions of ground and pile cap reinforcement, has been extensively examined and analysed by considering the key features in great details.

Field Evaluation of the Swelled Steel Tube Rockbolts (튜브형 강관 록볼트의 현장 적용성 평가)

  • Son, Sung-Gon;You, Jin-O;You, Joung-Hoon;Chung, Jae-Min
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1149-1156
    • /
    • 2011
  • A rockbolt is one of the most important reinforcement of on-site soil, as with the shotcrete and steel rib. The rockbolt by setting within the tunnel can prevent the deformation of the ground profile; furthermore it improves the structural behavior of soil and rock. In general, the rockbolt is mainly used with reinforced steel. However, steel pipe or the materials with the same strength can be used depending on the soil conditions, ground water outflow condition, and the surrounding of applying location. In Korea, most tunnel construction sites have used cement mortar or resin for steel reinforcement on the rock. Due to the ground water outflow in the construction site, the usability of steel reinforcement is poor and it requires curing time especially after installation. To improve exist above problems, this study introduces the development of a swelled steel pipe rockbolt, as well as presents the field testing and performance results.

  • PDF

Evaluation of Reinforcement Efficiency and Applicability Using a Reinforcement Method for Liquefiable Ground (액상화 발생 지반에 대한 보강공법 별 보강 효과 및 적용성 분석)

  • Yoo, Mintaek ;Han, Jin-Tae;Park, Youngjun ;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.41-50
    • /
    • 2023
  • This study reviewed the liquefaction reinforcement and ground reinforcement methods widely used domestically and abroad through construction method characteristics and analyzed the economic feasibility and reinforcement efficiency of each reinforcement method. The analysis results were used to evaluate the applicability of the appropriate reinforcement method for the liquefaction reinforcement of new and existing structures. As a result of evaluating the applicability of the reinforcement method based on the economic feasibility and reinforcement effect of each reinforcement method, the compaction method, which secures the construct ability by applying large equipment, is advantageous when reinforcing a new structure, and the low-fluidity mortar injection method (C.G.S method) and the high-pressure injection method (J.S.P method) are considered appropriate in the existing structure.

Settlement and Scour Characteristics of Artificial Reef according to Reinforced Ground (해저지반 보강에 따른 인공어초의 침하 및 세굴 특성)

  • Yun, Dae-Ho;Suh, Sung-Ho;Kim, Yun-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.186-193
    • /
    • 2016
  • Recently in Korea, a marine ranching project has continued to grow with the increasing needs of sea development. Management techniques, including settlement reduction and scour protection, have been required for constructing and maintaining the artificial reefs of this marine ranching project. The generation of settlement and scour can be influenced by ground characteristics. In this study, various laboratory tests (penetration test, two-dimensional water tank test) were performed to determine the settlement and scour characteristics of artificial reefs under various ground conditions. Three kinds of ground reinforcement were prepared: unreinforced, geogrid, and hybrid bamboo mat. Penetration test results showed that the normalized settlement ratio of ground reinforced with a hybrid bamboo mat was smaller than those of unreinforced ground and geogrid-reinforced ground. Two-dimensional water tank test results showed that the scour characteristics of ground reinforced with a geogrid were more reduced and stable than unreinforced ground. The amount of scour and ground settlement also decreased with increasing reinforced area.

A Study on Bearing Capacity according to the Number of Reinforcement Layers in Sandy Ground Reinforced by Mats of Equal-intervals (등간격의 매트로 보강된 모래지반의 보강층수에 따른 지지력에 관한 연구)

  • 임종철;박성재;주인곤;이재열;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.201-217
    • /
    • 1999
  • Bearing capacity of soil can be improved by several conventional ground improvement techniques like stabilization and compaction. In recent time, the use of reinforced soil has become popular due to the availability of durable strong geosynthetic materials. In this papers, through the laboratory model tests on sandy ground reinforced by mats about the strip footing under plane strain condition, the effects of bearing capacity improvement and behaviour of sandy ground were observed. And bearing capacities calculated by proposed method and measured by tests were compared.

  • PDF

An Experimental Study on the Increase of the Bearing Capacity on Sandy Ground due to Micropile Reinforcement (마이크로파일로 보강된 모래지반의 지지력 증가효과에 관한 실험적 연구)

  • 김정동;임종철;이태형
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.411-416
    • /
    • 2003
  • As rapid industrialization continues in these days, construction in the down town areas increases. Since constructions are performed around old and existing structures, the need to provide reinforcements to protect the existing structures from collapse and damage arises. Furthermore, if the construction is to take place in the down town area, difficult work space and damage caused by noise, vibration and collapse of structure can't be ignored. Among the remedial measures available today, micropile reinforcement is considered the best method to remedy these problems. But up to the present the characteristics of micropiles and ground behaviour has not been proven and no standard design is not yet available. Therefore, most design are performed based on previous experiences. In this study, the difference in the bearing capacity with changing reinforcement angle, space and sphere around foundation was monitored. These results were induced to broaden heighten the limits of micropile application.

  • PDF

Analysis on Reinforcing Effect at Fixed Part of Compression Anchor by Laboratory Element Tests (실내요소실험에 의한 압축형 앵커의 정착부 보강효과 분석)

  • 홍석우
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.49-55
    • /
    • 2002
  • The compression anchor is characterized by decrement of progressive failure, simple site work, economy and durability compared with tension anchor. In this paper, compression anchor is analysed through the laboratory element tests. The formula to be estimate the grout strength in fixed part of compression anchor and the effective reinforcement method for several types of soil were suggested. The following conclusions were made from this study : (1) A formula, which is able to calculate the grout strength in the fixed part of the compression anchor, is suggested. (2) The strength increment ratios( $R_{si}$) are 100%, 132%, 147%, 217% according to the reinforcement method of grout. The reinforcement method is Non, Outside spiral, Inside-Outside spiral, Steel pipe, respectively. (3) The strength increment ratios( $R_{si}$) by reinforcing can be 8.23 times the strength increment effect according to the reinforcement types and ground confining pressure. (4) The steel pipe reinforcement is most effective in decomposed soil while, in the case of hard rock ground, high confining pressure is exerted on the grout, so there is no need to use reinforcements.