• Title/Summary/Keyword: Reinforced steel corrosion

Search Result 377, Processing Time 0.022 seconds

Consideration on the Risk of Corrosion Assessment in Reinforced Concrete Structure by Corrosion Potential Criterion (부식전위 기준에 의한 철근콘크리트 구조물의 부식진단의 위험성에 관한 고찰)

  • Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Corrosion of steel reinforcement is a major factor in the deterioration of harbour and bridge structure. Steel corrosion in concrete must be checked for assessing the condition of a reinforced concrete structure. There are several ways how to measure the corrosion condition of reinforced concrete, but the corrosion potential measurement is a very simple, rapid, cost-effective and non-destructive technique to evaluate the severity of corrosion in reinforced concrete structure, therefore commonly used by engineers. However some particular situations may not relate to the reinforcement corrosion probability and a simple comparison of the corrosion potential data with the ASTM C876 Standard on steel reinforcement corrosion probability could be meaningless and not give reliable informations because of environment factors as oxygen concentration, chloride content, concrete resistance. Therefore this paper explains the risk of corrosion assessment in reinforced concrete structure and how many factors can affect the reliability of the corrosion potential data.

Slip Characteristics of Reinforced Concrete Beams to Corroded Steel State (철근부식상태에 따른 철근콘크리트 보의 슬립특성)

  • 권영웅;최봉섭;정용식
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.129-135
    • /
    • 1999
  • Reinforced concrete structures are constructed under the basic assumption of perfect bonding between steel and concrete. The corrosion of steel in the reinforced concrete beams results in the excessive cracks and gradual deterioration of concrete. This paper are concerned about the slip characteristics of reinforced concrete between steel and concrete. The accelerated test by external power supply was conducted with the three corrosion rates in the laboratory. As a result, it was obtained as follows: (1) the yield strength of steel was reduced according to corrosion states. (2) the equivalent steel area should be considered for detailed analysis. (3) According to the use of corroded steel or not, slip amounts between concrete and steel in test beams increased as the corrosion rate increased. These results can be explained from the bond loss between concrete and steel in test beams.

Strength degradation of reinforced concrete piers wrapped with steel plates under local corrosion

  • Gao, Shengbin;Ni, Jie;Zhang, Daxu;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.753-765
    • /
    • 2017
  • This paper aims to investigate the strength degradation of reinforced concrete piers wrapped with steel plates which corrode at the pier base by employing a three dimensional elasto-plastic finite element formulation. The prediction accuracy of the employed finite element analysis method is firstly verified by comparing the analytical results with test results. Then, a series of parametric studies is carried out to investigate the effects of steel plate's corrosion position along width direction, corrosion depth along plate thickness, corrosion range along width direction, and steel plate-concrete bonding degradation on the strength of the piers. It is observed that the strength degradation of the piers is closely related to steel plate's corrosion position, corrosion depth and corrosion range in the case of local corrosion on the webs. In contrast, when the base of flanges corrodes, the strength degradation of the piers is only related to steel plate's corrosion depth and corrosion range, and the influence of corrosion position on the strength degradation is very gentle. Furthermore, the strength of the piers decreases with the degradation of steel plate-concrete bonding behavior. Finally, the maximum strength of the piers obtained from numerical analysis corresponding to different bonding behavior is compared with theoretical results within an accepted error.

Corrosion of Steel Rebar in Concrete: A Review

  • Akib Jabed;Md Mahamud Hasan Tusher;Md. Shahidul Islam Shuvo;Alisan Imam
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.273-286
    • /
    • 2023
  • Rebar is embedded in concrete to create reinforced concrete (RC). Rebar carries most of the tensile stress and gives compressively loaded concrete fracture resistance. However, embedded steel corrosion is a significant cause of concern for RC composite structures worldwide. It is one of the biggest threats to concrete structures' longevity. Due to environmental factors, concrete decays and reinforced concrete buildings fail. The type and surface arrangement of the rebar, the cement used in the mortar, the dosing frequency of the concrete, its penetrability, gaps and cracks, humidity, and, most importantly, pollutants and aggressive species all affect rebar corrosion. Either carbonation or chlorides typically cause steel corrosion in concrete. Carbonation occurs when carbon dioxide in the atmosphere combines with calcium within the concrete. This indicates that the pH of the medium is falling, and the steel rebar is corroding. When chlorides pass through concrete to steel, corrosion rates skyrocket. Consideration must be given to concrete moisture. Owing to its excellent resistance, dry concrete has a low steel corrosion rate, whereas extremely wet concrete has a low rate owing to delayed O2 transfer to steel surfaces. This paper examines rebar corrosion causes and mechanisms and describes corrosion evaluation and mitigation methods.

Corrosion Properties of Reinforced Concrete with Types of Surface Cover and Covering Depth under the Combined Deterioration Environments (복합열화 환경하에서 표면피복종류 및 피복두께에 따른 철근콘크리트의 부식특성)

  • Kim, Moo-Han;Kwon, Young-Jin;Kim, Young-Ro;Kim, Jae-Hwan;Jang, Jong-Ho;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.119-126
    • /
    • 2004
  • Generally, reinforced concrete is one of the most commonly used structural materials and it prevents corrosion of steel bar by high pH of interior, But, as time elapsed, reinforced concrete structure become deteriorated by many of combined deterioration factors and environmental conditions. And, there are large number of deteriorate mechanism of the reinforced concrete structure and it acts complexly. It is recognized that steel bar corrosion is the main distress behind the present concern regarding concrete durability. In this study, to institute combined deterioration environments, established acceleration condition and cycle for combined deterioration environments has a resemblance to environments which are real structures placed. After that to confirm corrosion properties of reinforced concrete due to permeability with covering depth and types of surface cover under combined deterioration environments, measured carbonation velocity coefficients, chloride ion diffusion coefficients, water absorption coefficients, air permeability coefficients and electric potential, corrosion area ratio, weight reduction, corrosion velocity of steel bar. The results showed that an increase in age also decrease carbonation velocity coefficients, increase Chloride ion diffusion coefficients and increases water absorption coefficients. As well, an increase in age also increases corrosion of steel bar. Data on the development of corrosion velocity of steel bar with types of surface cover made with none, organic B, organic A, inorganic B, and inorganic A is shown. As well, permeability and corrosion velocity of steel bar with covering depth is superior to 10mm than 20mm. And it is confirmed permeability and corrosion properties of steel bar are closely related.

Experimental Evaluation of the Effect of Steel-Seal and Hydro-Seal in Reinforced Concrete Structures (STEEL-SEAL 및 HYDRO-SEAL의 철근콘크리트 구조무에 미치는 영향에 대한 실험적 연구)

  • 전환석;이강균;배수호;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.287-292
    • /
    • 1997
  • Recent economic growths have accelerating much construction activities of various infrastructures, such as Express railway, Long-span bridges, Multi-story Buildings and etc. Reinforcement steel corrosion to be inevitably caused under the progress of these construction activities have been on and off serious problems in the site, which could incur another tragedic accident to us suffering from safety-ignorance disease. Thus, it is strongly requested to develop probable innovative products which could remove corrosive materials on rebars and also protect steel corrosion of reinforced concrete structures in the construction site. Hydro-Seal and Steel-Seal could solve these problems currently faced with in the construction site. The objective of this research is to experimentally evaluated the effect of Hydro-Seal and Steel-Seal in reinforced concrete structures, of which usage might affect the bond strength between steel and concrete, long-term compressive strength of concrete, corrosion resistance and etc. Related test results show that appropriate dosage of Hydro-Seal and Steel-Seal in reinforced concrete structures didnot affect physical properties of reinforced concrete structures.

  • PDF

Simulation of corroded RC structures using a three-dimensional irregular lattice model

  • Kim, Kunhwi;Bolander, John E.;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.645-662
    • /
    • 2012
  • Deteriorative effects of steel corrosion on the structural response of reinforced concrete are simulated for varying degrees of corrosion. The simulation approach is based on a three-dimensional irregular lattice model of the bulk concrete, in which fracture is modeled using a crack band approach that conserves fracture energy. Frame elements and bond link elements represent the reinforcing steel and its interface with the concrete, respectively. Polylinear stress-slip properties of the link elements are determined, for several degrees of corrosion, through comparisons with direct pullout tests reported in the literature. The link properties are then used for the lattice modeling of reinforced concrete beams with similar degrees of corrosion of the main reinforcing steel. The model is successful in simulating several important effects of steel corrosion, including increased deflections, changes in flexural cracking behavior, and reduced yield load of the beam specimens.

An Experimental Study on Steel Bar Corrosion of Reinforced Concrete Structure (철근콘크리트 구조물의 철근부식에 관한 실험 연구)

  • Chae, Young-Suk;Choi, Il-Yoon;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.29-35
    • /
    • 2013
  • The purpose of this study is to investigate the steel bar corrosion and degree of reinforced concrete bridge, and analyze the cause of corrosion occurrence. Therefore they could ensure the durability and stability as to suggest the corrosion prevention of reinforced concrete structure. To study the corrosion state reinforced concrete structure, We investigate the cover of concrete, the compressive strength by schmidt hammer, the neutralization test of site, the compressive strength of core and the measurement of neutralized depth. As the results of test, the corrosion-grade of reinforced concrete structure which the degree of corrosion is 3, 4 degree get to 18% in the used time of 40 years and the time elapsed of 25 years. Therefore the corrosion of steel bar give rise to public discussion. The degree of corrosion is serious, and the neutralization come to the cover of concrete.

An Electrochemical Study on the Effect of Salt Affecting to Corrosion Behavior of Concrete Reinforced Steel in Natural Sea Water (천연해수에 침지된 콘크리트 내부의 철근부식거동에 미치는 염분의 영향에 관한 전기화학적 연구)

  • 김광근;류보현;점성종;김기준;문경만
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.23-29
    • /
    • 2000
  • When the concrete structures were being made with sand containing chloride ion it was knows that corrosion rate of reinforced steel embedded in concrete with chloride ion was higher than that of concrete with on chloride ion. In this study, the operation of Friedel salts affecting the corrosion behavior of reinforced steel embedded in cement mortar was investigated with electrochemical view. Corrosion potential of reinforced steel embedded in cement mortar with sand containing chloride ion was shifted noble direction than that of cement mortar with no chloride ion after immersed 5 month in natural sea water and also corrosion current density decreased with shifting corrosion potential to noble direction. However Friedel salts appeared from surface to 2.5cm of inside direction of mortar specimen, which is located at 11.5$\circ$(2$\theta$) in XRD analysis and the amount of Ca(OH)2 by SEM photograph in cement mortar with chloride ion was larger than that of cement mortar with mo chloride ion. Eventually it is suggested that Friedel salts was resulted from chloride ion and it acted as the corrosion inhibitor.

  • PDF

Corrosion Characteristics of Reinforced Steel Bar Emedded in Multiple Mortar Specimen(W/C:0.5) Aged 5 Years in Seawater

  • Moon, Kyung-Man;Takeo, Oki;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • Reinforced concrete structures have been increasingly widely used in numerous industrial fields. These structures are often exposed to severely corrosive environments such as seawater, contaminated water, acid rain, and the seashore. Thus, the corrosion problems that occur with the steel bars embedded in concrete are very important from the safety and economic points of view. In this study, the effects of the cover thickness on the corrosion properties of reinforced steel bars embedded in multiple mortar test specimens immersed in seawater for 5 years were investigated using electrochemical methods such as the corrosion potentials, polarization curves, cyclic voltammograms, galvanostat, and potentiostat. The corrosion potentials shifted in the noble direction, and the value of the AC impedance also exhibited a higher value with increasing cover thickness. Furthermore, the polarization resistance increased with increasing cover thickness, which means that the oxide film that is deposited on the surface of a steel bar surrounded by alkali environment exhibits better corrosion resistance because the water, chloride ions and dissolved oxygen have difficulty penerating to the surface of the steel bar with increasing cover thickness. Consequently, it is considered that the corrosion resistance of reinforced steel can be improved by increasing the cover thickness. However, the corrosion resistance values of a steel bar estimated by measuring the corrosion potential, impedance and polarization resistance were not in good agreement with its corrosion resistance obtained by polarization curves.