DOI QR코드

DOI QR Code

Consideration on the Risk of Corrosion Assessment in Reinforced Concrete Structure by Corrosion Potential Criterion

부식전위 기준에 의한 철근콘크리트 구조물의 부식진단의 위험성에 관한 고찰

  • Jeong, Jin-A (Department of Ship Operation, Korea Maritime & Ocean University)
  • 정진아 (한국해양대학교, 선박운항과)
  • Received : 2015.04.17
  • Accepted : 2015.06.29
  • Published : 2015.06.30

Abstract

Corrosion of steel reinforcement is a major factor in the deterioration of harbour and bridge structure. Steel corrosion in concrete must be checked for assessing the condition of a reinforced concrete structure. There are several ways how to measure the corrosion condition of reinforced concrete, but the corrosion potential measurement is a very simple, rapid, cost-effective and non-destructive technique to evaluate the severity of corrosion in reinforced concrete structure, therefore commonly used by engineers. However some particular situations may not relate to the reinforcement corrosion probability and a simple comparison of the corrosion potential data with the ASTM C876 Standard on steel reinforcement corrosion probability could be meaningless and not give reliable informations because of environment factors as oxygen concentration, chloride content, concrete resistance. Therefore this paper explains the risk of corrosion assessment in reinforced concrete structure and how many factors can affect the reliability of the corrosion potential data.

Keywords

References

  1. N. J. Carino, J. Perform. Constr. Fac.il, 13, 96 (1999). https://doi.org/10.1061/(ASCE)0887-3828(1999)13:3(96)
  2. S. K. Verma, S. S. Bhadauria, and S. Akhtar, J. Constr. Eng., 834572, 11 (2013).
  3. H. Song and V. Saraswathy, Int. J. Electrochem. Sci., 2, 1 (2007).
  4. J. Jeong and K. Kim, Corros. Sci. Tech., 11, 77 (2012). https://doi.org/10.14773/cst.2012.11.3.077
  5. C. Jin, J. Jeong and E. Kyoung, Corros. Sci. Tech., 11, 6 (2012).
  6. T. Parthiban, R. Ravi, and G. T. Parthiban, Adv. Eng. Softw., 37, 375 (2006). https://doi.org/10.1016/j.advengsoft.2005.09.004
  7. ASTM Standard C876-91, Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete, Annual Book of ASTM Standards, 03.02, 432 (1994).
  8. B. Pradhan and B. Bhattacharjee, J. Mater. Civ. Eng., 21, 543 (2009). https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(543)
  9. Gu Ping and J. J. Beaudoin, Construction Technology Update, 18, 1 (1998).
  10. H. Xu, Z. Chen, B. Xu, and D. Ma, The Open Civil Engineering Journal, 6, 1 (2012). https://doi.org/10.2174/1874149501206010001
  11. B. Elsener, Constr. Build. Mater., 15, 133 (2001). https://doi.org/10.1016/S0950-0618(00)00062-3
  12. R. R. Hussain, Measurement, 44, 274 (2011). https://doi.org/10.1016/j.measurement.2010.10.002
  13. G. K. Glass, B. Reddy, and N. R. Buenfeld, Corros. Sci., 42, 2013 (2000). https://doi.org/10.1016/S0010-938X(00)00040-8
  14. Y. S. Kim, S. J. Park, D. Hwangbo, and M. C. Shin, Corros. Sci. Tech., 11, 26 (2012).
  15. L. Bertolini, F. Bolzoni, A. Cigada, T. Pastore, and P. Pedeferri, Corros. Sci., 35, 1633 (1993). https://doi.org/10.1016/0010-938X(93)90393-U

Cited by

  1. 해수침지-건조 환경에 노출된 모르타르속 철근의 부식속도 평가 vol.22, pp.4, 2015, https://doi.org/10.11112/jksmi.2018.22.4.010
  2. Corrosion Monitoring of Reinforced Steel Embedded in Cement Mortar under Wet-And-Dry Cycles by Electrochemical Impedance Spectroscopy vol.20, pp.1, 2015, https://doi.org/10.3390/s20010199