• Title/Summary/Keyword: Reinforced Concrete Member

Search Result 488, Processing Time 0.026 seconds

Design optimization of reinforced concrete structures

  • Guerra, Andres;Kiousis, Panos D.
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.313-334
    • /
    • 2006
  • A novel formulation aiming to achieve optimal design of reinforced concrete (RC) structures is presented here. Optimal sizing and reinforcing for beam and column members in multi-bay and multistory RC structures incorporates optimal stiffness correlation among all structural members and results in cost savings over typical-practice design solutions. A Nonlinear Programming algorithm searches for a minimum cost solution that satisfies ACI 2005 code requirements for axial and flexural loads. Material and labor costs for forming and placing concrete and steel are incorporated as a function of member size using RS Means 2005 cost data. Successful implementation demonstrates the abilities and performance of MATLAB's (The Mathworks, Inc.) Sequential Quadratic Programming algorithm for the design optimization of RC structures. A number of examples are presented that demonstrate the ability of this formulation to achieve optimal designs.

An Experimental Study on the Compressive Strength Characteristics of Reinforced Concrete Columns Strengthened with Fiber Sheets (섬유시트로 보강된 철근콘크리트 기둥의 압축강도 특성에 관한 실험적 연구)

  • Kim, Jeong-Sup;Choi, Jin-Seok;Cho, Cheol-Hee;Go, Song-Kyoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.2
    • /
    • pp.119-127
    • /
    • 2003
  • Test specimen test was performed using concrete reinforced with fiber sheet and the test variables were based on the kinds of fiber and the number of reinforcement layers. Using steel-concrete reinforced with fiber sheet, compression tests were performed and the test variables were the kinds of fiber, number reinforcement layers and reinforcement layer order. The following results were obtained: 1) It was demonstrated that compressive strength of the test specimen reinforced during test specimen test and member test increased as the number of reinforcement layers increased. 2) It was shown that non-reinforced test, specimen were destroyed during the member tests, but the specimen reinforced with CFS destroyed and the GFS-reinforced specimen and composite reinforced specimen showed ductile destruction. 3) As a result of tests on kinds of reinforcement fiber, it was demonstrated that CFS-reinforced test specimen had higher compressive strength in a 공시체 test. In the member test, 2ply-and 3ply-GFS reinforced specimens except lplied one had higher compressive strength. It was because partial destruction occurred due to the rate of height/section. 4) For layer strength order, compared with test specimen reinforced only with a single reinforced material, test specimen reinforced with CFS and GFS, and test specimen reinforced with CFS first showed better results in compressive strength and ductility judgement.

Application of Composites to Construction Industry and Development of Concrete Filled Composite Compression Member (복합소재의 건설분야 응용현황과 콘크리트 합성압축부재의 개발)

  • 이성우;박신전
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.183-188
    • /
    • 1999
  • Due to many advantages of advanced composite materials, research on the application of composites to the construction industry is initiated. In this paper, fabrication methods efficient for infrastructures and application examples of each method are discussed. It also presents the structural characteristics of concrete filled glass fiber reinforced composite tubular member. Experimental results shows that strength and ductility of composite compression member is considerably increased due to concrete confinement action of composite surface.

  • PDF

Cracking Behavior Of Reinforced Concrete Voided Slab Bridge (철근 콘크리트 중공슬래브 교량의 균열 거동)

  • 김인배;손혁수;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.763-768
    • /
    • 2000
  • In this study, the tests were performed on a series of reinforced concrete strip specimens to investigate a cracking behavior of reinforced concrete voided slab bridge. Also, the mid-span deflections, the crack widths and failure mode of reinforced concrete strip specimens were studied. It was found that serviceability of cracking and deflection at reinforced concrete voided slab bridge which were constructed and designed under verifying serviceability as design criteria are lower than common reinforced concrete member. On the basis of the experimental results, it is more reasonable concrete to evaluate crack occurring $f_r=2.0\surd{f_{ck}}$ rather than modulus of rupture of concrete, $f_r=0.8\surd{f_{ck}}$

  • PDF

An Analytical Study on the Shear Capacity of Reinforced Concrete Member with Small Shear Span Ratio (전단스팬비가 작은 철근콘크리트 부재의 전단내력평가에 관한 해석적 연구)

  • 강석화
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.193-202
    • /
    • 1994
  • In this study, an equation for modelling the shear strength of reinforced concrete member with web reinforcement is proposed. Although the general formulas for shear strength of reinforced concrete member with small a /d are obtained based on the experimental results, the proposed equation herein is derived from lower bound theorem of limit analysis. The proposed model takes into account arch mechanism and truss mechanism. And ir provides the values of divided shear strength ratio of each mechanism as well as visual understanding of the mechanism on how the given load is transfered to the support. Also, the model takes into account the effect of a /d. longitudinal reinforcement ratio, and web reiriforcement ratio quantitively. Based on the comparisons of the result of this model with previous, test results, it shows good agreements.

Service-Life Prediction of Reinforced Concrete Structures under Corrosive Environment

  • Shimomura, Takumi
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.171-177
    • /
    • 2005
  • A comprehensive framework for numerical simulation of time-dependent performance change of reinforced concrete (RC) structures subjected to chloride attack is presented in this paper. The system is composed of simplified computational models for transport of moisture and chloride ions in concrete pore structure and crack, corrosion of reinforcement in concrete and mechanical behavior of RC member with reinforcement corrosion. Service-life of RC structures under various conditions is calculated.

Curvature and Deflection of Reinforced Concrete Member Due to Shrinkage (건조수축에 의한 철근콘크리트 부재의 곡률과 처짐)

  • 김진근;이상순;김민수;신병천
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.333-338
    • /
    • 1998
  • Deflections due to warping are frequently ignored in design calculation. For thin member, shrinkage deflection results in important and objectionable additions to the dead load deflection. Thus it may be desirable to consider warping effects due to shrinkage for thin member. Some methods for computing shrinkage curvature have been proposed by many researchers. The approximate methods widely used in the recent years are the equivalent tensile force method. Miller's method and Branson's method (an empirical method based on Miller's approach extended to include doubly reinforced beams). These method were somewhat oversimplified and could be too conservative in the case of well cured concrete structure. In this paper, the approximate method for computing shrinkage curvature are reviewed and new approximate method based on the Age-Adjusted Effective Modulus method is proposed.

  • PDF

Comparison of Residual Strain of Prestressed Concrete Beam Member by Different Analysis Method (해석법 차이에 의한 프리스트레스트 콘크리트 보부재의 잔류변형률 비교)

  • Lee, Duck Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.189-195
    • /
    • 2017
  • In the seismic design of building structural members, due to the complexity of the placement of PC steels in prestressed concrete members, it is necessary to review and define the definition of member damage in comparison with reinforced concrete members. In this study, the results of past experiments compared with the calculation results by 'section Analysis Method', with the aim of reviewing the precision of calculation results when member damage evaluation is performed using the section analysis method. Furthermore, it is also compared with the calculation results by the 'split Element Method'. In addition, parametric studies were carried out, and the influence of the difference between the amount of PC steels and reinforced bar on the residual strain was examined.

Seismic Performance Improvement of MDOF Reinforced Concrete Moment Frame Retrofitted Steel Jacket (다자유도 철근 콘크리트 모멘트 골조의 Steel Jacket보강 내진성능개선)

  • Kim, Jun-Young;Jung, In-Kju;Park, Soon-Eung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.69-77
    • /
    • 2013
  • This study is the research appling the representative Displacement-Based Design which is the basic concept of Direct Displacement Based Design proposed by Chopra and Goel to original Reinforced Concrete moment frame and determining the thickness of retrofit Steel Jacket about the Maximum design ground acceleration, and developing the more improved Algorithm as well as program by the Retrofit Design method and Nonlinear analysis by the Performance design method before and after reinforcement appling the determined retrofit thickness. It also shows the result of the seismic performance improvement which is the ratio of seismic performance appreciation result yield displacement 19%, yield strength ratio 24%, displace ductility ratio the maximum 27% comparing Multi degree of freedom, column member of Reinforced Concrete with the performance improvement column member considering the thickness of the determined Steel Jacket. The developed Algorithm and program are easy to apply seismic design and application to the original Reinforced Concrete building, at the same time, it applicate to display well the design result of Target displacement performance level about nonlinear behavior.

Structural Characteristics of Concrete Filled GFRP Composite Compression Member (콘크리트 합성 유리섬유 복합소재 압축부재의 거동특성)

  • 이성우;최석환;손기훈;김성태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.181-188
    • /
    • 2001
  • Due to many advantage of advanced composite material, research on the composite compression member is initiated. In this paper structural characteristics of concrete filled glass fiber reinforced composite tubular member is studied. Through 4-point flexural test with various level of axial force, the performance of composite compression member was analyzed. Also numerical method to find P-M diagram of composite compression member was developed. It is demonstrated that result of numerical method agree well with experimental results.

  • PDF