• Title/Summary/Keyword: Reifenberg flat domain

Search Result 2, Processing Time 0.015 seconds

GLOBAL GRADIENT ESTIMATES FOR NONLINEAR ELLIPTIC EQUATIONS

  • Ryu, Seungjin
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1209-1220
    • /
    • 2014
  • We prove global gradient estimates in weighted Orlicz spaces for weak solutions of nonlinear elliptic equations in divergence form over a bounded non-smooth domain as a generalization of Calder$\acute{o}$n-Zygmund theory. For each point and each small scale, the main assumptions are that nonlinearity is assumed to have a uniformly small mean oscillation and that the boundary of the domain is sufficiently flat.

ELLIPTIC OBSTACLE PROBLEMS WITH MEASURABLE NONLINEARITIES IN NON-SMOOTH DOMAINS

  • Kim, Youchan;Ryu, Seungjin
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.239-263
    • /
    • 2019
  • The $Calder{\acute{o}}n$-Zygmund type estimate is proved for elliptic obstacle problems in bounded non-smooth domains. The problems are related to divergence form nonlinear elliptic equation with measurable nonlinearities. Precisely, nonlinearity $a({\xi},x_1,x^{\prime})$ is assumed to be only measurable in one spatial variable $x_1$ and has locally small BMO semi-norm in the other spatial variables x', uniformly in ${\xi}$ variable. Regarding non-smooth domains, we assume that the boundaries are locally flat in the sense of Reifenberg. We also investigate global regularity in the settings of weighted Orlicz spaces for the weak solutions to the problems considered here.