References
- E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007), no. 2, 285-320. https://doi.org/10.1215/S0012-7094-07-13623-8
- P. Baroni, Lorentz estimates for degenerate and singular evolutionary systems, J. Differential Equations 255 (2013), no. 9, 2927-2951. https://doi.org/10.1016/j.jde.2013.07.024
- P. Baroni, A. Di Castro, and G. Palatucci, Global estimates for nonlinear parabolic equations, J. Evol. Equ. 13 (2013), no. 1, 163-195. https://doi.org/10.1007/s00028-013-0174-6
- S. Byun, J. Ok, and S. Ryu, Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains, J. Differential Equations 254 (2013), no. 11, 4290-4326. https://doi.org/10.1016/j.jde.2013.03.004
-
S. Byun and D. K. Palagachev, Weighted
$L^{P}$ -estimates for elliptic equations with mea- surable coefficients in nonsmooth domains, Potential Anal. 41 (2014), no. 1, 51-79. https://doi.org/10.1007/s11118-013-9363-8 -
S. Byun, D. K. Palagachev, and S. Ryu, Weighted
$W^{1,P}$ estimates for solutions of non-linear parabolic equations over non-smooth domains, Bull. London Math. Soc. 45 (2013), no. 4, 765-778. https://doi.org/10.1112/blms/bdt011 - S. Byun and S. Ryu, Gradient estimates for higher order elliptic equations on nonsmooth domains, J. Differential Equations 250 (2011), no. 1, 243-263. https://doi.org/10.1016/j.jde.2010.10.001
- S. Byun and S. Ryu, Global weighted estimates for the gradient of solutions to nonlinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire 30 (2013), no. 2, 291-313. https://doi.org/10.1016/j.anihpc.2012.08.001
- S. Byun and L. Wang, Elliptic equations with BMO nonlinearity in Reifenberg domains, Adv. Math. 219 (2008), no. 6, 1937-1971. https://doi.org/10.1016/j.aim.2008.07.016
-
L. A. Caffarelli and I. Peral, On
$W^{1,P}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1998), no. 1, 1-21. https://doi.org/10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G - H. Dong and D. Kim, Higher order elliptic and parabolic systems with variably partially BMO coefficients in regular and irregular domains, J. Funct. Anal. 261 (2011), no. 11, 3279-3327. https://doi.org/10.1016/j.jfa.2011.08.001
-
H. Dong and D. Kim,
$L_{P}$ solvability of divergence type parabolic and elliptic systems with partially BMO coefficients, Calc. Var. Partial Differential Equations 40 (2011), no. 3-4, 357-389. https://doi.org/10.1007/s00526-010-0344-0 - H. Dong and D. Kim, The conormal derivative problem for higher order elliptic systems with irregular coefficients, Recent advances in harmonic analysis and partial differential equations, 69-97, Contemp. Math., 581, Amer. Math. Soc., Providence, RI, 2012.
- F. Duzaar, G. Mingione, and K. Steffen, Parabolic systems with polynomial growth and regularity, Mem. Amer. Math. Soc. 214 (2011), no. 1005, x+118 pp.
-
G. Di Fazio,
$L^{P}$ estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital A (7) 10 (1996), no. 2, 409-420. - A. Fiorenza and M. Krbec, Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin. 38 (1997), no. 3, 433-451.
- V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1991.
- N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential Equations 32 (2007), no. 1-3, 453-475. https://doi.org/10.1080/03605300600781626
- N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI, 2008. xviii+357pp.
- T. Mengesha and N. C. Phuc, Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains, J. Differential Equations 250 (2011), no. 5, 2485-2507. https://doi.org/10.1016/j.jde.2010.11.009
- T. Mengesha and N. C. Phuc, Global Estimates for quasilinear elliptic equations on Reifenberg flat domains, Arch. Ration. Mech. Anal. 203 (2012), no. 1, 189-216. https://doi.org/10.1007/s00205-011-0446-7
- D. K. Palagachev and L. G. Softova, A priori estimates and precise regularity for parabolic systems with discontinuous data, Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 721-742. https://doi.org/10.3934/dcds.2005.13.721
- N. C. Phuc, Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations, Adv. Math. 250 (2014), 387-419. https://doi.org/10.1016/j.aim.2013.09.022
- L. G. Softova, Morrey-type regularity of solutions to parabolic problems with discontinuous data, Manuscripta Math. 136 (2011), no. 3-4, 365-382. https://doi.org/10.1007/s00229-011-0447-8
- T. Toro, Doubling and flatness: geometry of measures, Notices Amer. Math. Soc. 44 (1997), no. 9, 1087-1094.
- L. Wang and F. Yao, Global regularity for higher order divergence elliptic and parabolic equations, J. Funct. Anal. 266 (2014), no. 2, 792-813. https://doi.org/10.1016/j.jfa.2013.10.018
- L.Wang, F. Yao, S. Zhou, and H. Jia, Optimal regularity theory for the Poisson equation, Proc. Amer. Math. Soc. 137 (2009), no. 6, 2037-2047. https://doi.org/10.1090/S0002-9939-09-09805-0
Cited by
- Weighed Estimates for Nonlinear Elliptic Problems with Orlicz Data vol.1, pp.1, 2015, https://doi.org/10.1007/BF03377367