Lee Sang-Kyung;Jang Jin-Wook;Seong Seung-Hwan;Lee Un-Chul
The Transactions of the Korean Institute of Electrical Engineers D
/
v.54
no.9
/
pp.567-569
/
2005
NARX(Nonlinear AutoRegressive with eXogenous input) neural network was used for prediction of nuclear reactor behavior which was influenced by control rods in short-term period and also by the concentration of xenon and boron in long-term period in load following operations. The developed model was designed to predict reactor power, xenon worth and axial offset with different burnup states when control rods and boron were adjusted in load following operations. Data of the Korea Next Generation PWR were collected by ONED94 code. The test results presented exhibit the capability of the NARX neural network model to capture the long term and short term dynamics of the reactor core and the developed model seems to be utilized as a handy tool for the use of a plant simulation.
This paper presents the results of Landsat-TM imagery applications for detecting spatial variations of the water environments in the Saemankeum (STLR) project areas. The simulated tidal flow patterns from a two -dimensional hydro - dynamic model and water quality data from STRL project were used for relationships with the satellite data. Unsupervised classification of the tidal water body reflects the overall flow patterns at a flooding tide. Regressive equations for water quality parameters were derived and used for supervised classifications. The results were found to be useful to synoptically evaluate the water environments during the construction stages of the STLR project.
Celik, Ozan;Terrell, Thomas;Gul, Mustafa;Catbas, F. Necati
Structural Monitoring and Maintenance
/
v.5
no.2
/
pp.273-295
/
2018
In this study, an investigation of a damage detection methodology for global condition assessment is presented. A particular emphasis is put on the utilization of wireless sensors for more practical, less time consuming, less expensive and safer monitoring and eventually maintenance purposes. Wireless sensors are deployed with a sensor roving technique to maintain a dense sensor field yet requiring fewer sensors. The time series analysis method called ARX models (Auto-Regressive models with eXogeneous input) for different sensor clusters is implemented for the exploration of artificially induced damage and their locations. The performance of the technique is verified by making use of the data sets acquired from a 4-span bridge-type steel structure in a controlled laboratory environment. In that, the free response vibration data of the structure for a specific sensor cluster is measured by both wired and wireless sensors and the acceleration output of each sensor is used as an input to ARX model to estimate the response of the reference channel of that cluster. Using both data types, the ARX based time series analysis method is shown to be effective for damage detection and localization along with the interpretations and conclusions.
JALAL, Raja Nabeel-Ud-Din;SARGIACOMO, Massimo;SAHAR, Najam Us
The Journal of Asian Finance, Economics and Business
/
v.7
no.11
/
pp.251-257
/
2020
The study investigates the role of commodity prices and tax purpose recognition on bitcoin prices. Since the introduction of bitcoin in 2008, emphasis has focused on economists, policy-makers and analysts drastically increasing bitcoin's accessibility and commodity values (Dumitrescu & Firică, 2014). This study employs GARCH and EGARCH from ARCH/GARCH family on daily nature data. We measure the volatile behavior of bitcoin by employing auto-regressive conditional heteroscedasticity model with the aim to explore the relationship between major commodities and bitcoin volatility. We focus on major commodities like gold, silver, platinum, and crude oil to be regressed with bitcoin. The daily prices of commodities were retrieved from www.investing.com and bitcoin prices from www.coindesk.com for the period from 29April 2013 to 16 October 2018. Results confirmed the currency's long-term volatile behavior, which is due to its composition and market dynamics, whereas the existence of asymmetric information effect is not confirmed. Tax recognition by other countries may in future help in controlling the volatility as bitcoin is not a country-specific security. But, only silver impacts on volatility in comparison to oil prices and platinum, which is due to its similar features with gold. Eventually, bitcoin can be used for risk diversification and money making.
Within the context of Structural Health Monitoring (SHM), it is often the case that structural systems are described by uncertainty, both with respect to their parameters and the characteristics of the input loads. For the purposes of system identification, efficient modeling procedures are of the essence for a fast and reliable computation of structural response while taking these uncertainties into account. In this work, a reduced order metamodeling framework is introduced for the challenging case of nonlinear structural systems subjected to earthquake excitation. The introduced metamodeling method is based on Nonlinear AutoRegressive models with eXogenous input (NARX), able to describe nonlinear dynamics, which are moreover characterized by random parameters utilized for the description of the uncertainty propagation. These random parameters, which include characteristics of the input excitation, are expanded onto a suitably defined finite-dimensional Polynomial Chaos (PC) basis and thus the resulting representation is fully described through a small number of deterministic coefficients of projection. The effectiveness of the proposed PC-NARX method is illustrated through its implementation on the metamodeling of a five-storey shear frame model paradigm for response in the region of plasticity, i.e., outside the commonly addressed linear elastic region. The added contribution of the introduced scheme is the ability of the proposed methodology to incorporate uncertainty into the simulation. The results demonstrate the efficiency of the proposed methodology for accurate prediction and simulation of the numerical model dynamics with a vast reduction of the required computational toll.
최근 많은 분야에서 인공지능을 사용한 산업이 각광을 받고 있고 그중 챗-GPT 로 인하여 챗봇에 관한 관심도가 높아져 관련 연구가 많이 진행되고 있다. 특히 질문에 대한 답변을 생성해주는 분야에 대한 연구가 많이 이루어지고 있는데, 질문-답변의 데이터 셋에 대한 학습 방식보다는 질문-답변-배경지식으로 이루어진 데이터 셋에 대한 학습 방식이 많이 연구가 되고 있다. 그러다 보니 배경지식을 어떤 방식으로 모델에게 이해를 해줄 지가 모델 성능에 큰 부분 차지한다. 그리고 최근 연구에 따르면 이러한 배경지식 정보를 이해시키기 위해 잠재 변수 모델링 기법을 활용하는 것이 높은 성능을 갖는다고 하고 트랜스포머 기반 모델 중 생성 문제에서 강점을 보이는 BART(Bidirectional Auto-Regressive Transformer)[1]도 주로 활용된다고 한다. 본 논문에서는 BART 모델에 잠재 변수 모델링 기법 중 잠재 변수를 어텐션에 곱하는 방식을 이용한 모델을 통해 답변 생성 문제에 관한 해결법을 제시하고 그에 대한 결과로 배경지식 정보를 담은 답변을 보인다. 생성된 답변에 대한 평가는 기존에 사용되는 BLEU 방식과 배경지식을 고려한 방식의 BLEU 로 평가한다.
High amounts of air pollution in crowded urban areas are always considered as one of the major environmental challenges especially in developing countries. Despite the errors in air pollution prediction, the forecasting of future data helps air quality management make decisions promptly and properly. We studied the air quality of the Aqdasiyeh location in Tehran using factor analysis and the Box-Jenkins time series methods. The Air Quality Control Company (AQCC) of the Municipality of Tehran monitors seven daily air quality parameters, including carbon monoxide (CO), Nitrogen Monoxide (NO), Nitrogen dioxide ($NO_2$), $NO_x$, ozone ($O_3$), particulate matter ($PM_{10}$) and sulfur dioxide ($SO_2$). We applied the AQCC data for our study. According to the results of the factor analysis, the air quality parameters were divided into two factors. The first factor included CO, $NO_2$, NO, $NO_x$, and $O_3$, and the second was $SO_2$ and $PM_{10}$. Subsequently, the Box- Jenkins time series was applied to the two mentioned factors. The results of the statistical testing and comparison of the factor data with the predicted data indicated Auto Regressive Integrated Moving Average (0, 0, 1) was appropriate for the first factor, and ARIMA (1, 0, 1) was proper for the second one. The coefficient of determination between the factor data and the predicted data for both models were 0.98 and 0.983 which may indicate the accuracy of the models. The application of these methods could be beneficial for the reduction of developing numbers of mathematical modeling.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.457-460
/
2021
대화 시스템은 인공지능과 사람이 자연어로 의사 소통을 하는 시스템으로 크게 목적 지향 대화와 일상대화 시스템으로 연구되고 있다. 목적 지향 대화 시스템의 경우 날씨 확인, 호텔 및 항공권 예약, 일정 관리 등의 사용자가 생활에 필요한 도메인들로 이루어져 있으며 각 도메인 별로 목적에 따른 시나리오들이 존재한다. 이러한 대화는 사용자에게 명확한 발화을 제공할 수 있으나 자연스러움은 떨어진다. 일상 대화의 경우 다양한 도메인이 존재하며, 시나리오가 존재하지 않기 때문에 사용자에게 자연스러운 발화를 제공할 수 있다. 또한 일상 대화의 경우 검색 기반이나 생성 기반으로 시스템이 개발되고 있다. 검색 기반의 경우 발화 쌍에 대한 데이터베이스가 필요하지만, 생성 기반의 경우 이러한 데이터베이스가 없이 모델의 Language Modeling (LM)으로 부터 생성된 발화에 의존한다. 따라서 모델의 성능에 따라 발화의 품질이 달라진다. 최근에는 사전학습 모델이 자연어처리 작업에서 높은 성능을 보이고 있으며, 일상 대화 도메인에서도 역시 높은 성능을 보이고 있다. 일상 대화에서 가장 높은 성능을 보이고 있는 사전학습 모델은 Auto Regressive 기반 생성모델이고, 한국어에서는 대표적으로 KoGPT2가 존재한다. 그러나, KoGPT2의 경우 문어체 데이터만 학습되어 있기 때문에 대화체에서는 낮은 성능을 보이고 있다. 본 논문에서는 대화체에서 높은 성능을 보이는 한국어 기반 KoDialoGPT2를 개발하였고, 기존의 KoGPT2보다 높은 성능을 보였다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.38
no.2
/
pp.349-356
/
2018
This paper attempts to develop a connection model based on FE analysis that can be applied to the evaluation of earthquake fragility of Steel Storage Racks lacking research in Korea. In order to accomplish this goal, shaking table tests, modal tests, and various member tests (8 case, push-over test) for structural members have been conducted to understand the behavior of steel storage racks. Based on the experimental results, detailed modeling of the joints was conducted using the NX-Nastran program in order to develop a connection model for Steel storage racks to be applied to the seismic vulnerability assessment. Especially, surface to surface contact element and spring element are applied to simulate the connection between the column member and the beam member connected by the simple latch method. Spring element model developed and applied ARX (Auto Regressive eXogenous) based mathematical model. The simulation results based on the FE model showed excellent reliability with a mutual error rate of less than 8% when compared with the member test results. As a result, it was confirmed that the FE model based connection model developed in the study can be applied to the analytical model for the seismic vulnerability assessment of Steel storage racks.
We have presented a nonparametric stochastic approach for the SOI(Southern Oscillation Index) series that used nonlinear methodology called Nonlinear AutoRegressive(NAR) based on conditional kernel density function and CAFPE(Corrected Asymptotic Final Prediction Error) lag selection. The fitted linear AR model represents heteroscedasticity, and besides, a BDS(Brock - Dechert - Sheinkman) statistics is rejected. Hence, we applied NAR model to the SOI series. We can identify the lags 1, 2 and 4 are appropriate one, and estimated conditional mean function. There is no autocorrelation of residuals in the Portmanteau Test. However, the null hypothesis of normality and no heteroscedasticity is rejected in the Jarque-Bera Test and ARCH-LM Test, respectively. Moreover, the lag selection for conditional standard deviation function with CAFPE provides lags 3, 8 and 9. As the results of conditional standard deviation analysis, all I.I.D assumptions of the residuals are accepted. Particularly, the BDS statistics is accepted at the 95% and 99% significance level. Finally, we split the SOI set into a sample for estimating themodel and a sample for out-of-sample prediction, that is, we conduct the one-step ahead forecasts for the last 97 values (15%). The NAR model shows a MSEP of 0.5464 that is 7% lower than those of the linear model. Hence, the relevance of the NAR model may be proved in these results, and the nonparametric NAR model is encouraging rather than a linear one to reflect the nonlinearity of SOI series.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.