Acknowledgement
Supported by : ASTRA
References
- Adams, D. and Farrar, C. (2002), "Classifying linear and nonlinear structural damage using frequency domain arx models", Struct. Hlth. Monit., 1(2), 185-201. https://doi.org/10.1177/1475921702001002005
- Bathe, K.J. (2009), Finite element method, Wiley Encyclopedia of Computer Science and Engineering, Ed. Wah B, Wiley & Sons, Inc.
- Beck, J.L. and Katafygiotis, L.S. (1998), "Updating models and their uncertainties. I: Bayesian statistical framework", J. Eng. Mech., 124(4), 455-461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)
- Blatman, G. and Sudret, B. (2010), "An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis", Prob. Eng. Mech., 25(2), 183-197. https://doi.org/10.1016/j.probengmech.2009.10.003
- Caicedo, J., Dyke, S. and Johnson, E. (2004), "Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem, Simulated data", J. Eng. Mech., 130(1), 49-60. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(49)
- Chatzi, E. and Smyth, A.W. (2009), "The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing", Struct. Control Hlth. Monit., 16(1), 99-123. https://doi.org/10.1002/stc.290
- Chen, S. and Billings, S.A. (1989), "Modelling and analysis of non-linear time series", Int. J. Control, 50(6), 2151-2171. https://doi.org/10.1080/00207178908953491
- Chen, Q., Worden, K., Peng, P. and Leung, A. (2007), "Genetic algorithm with an improved fitness function for (n)arx modeling", Mech. Syst. Signal Pr., 21(2), 994-1007. https://doi.org/10.1016/j.ymssp.2006.01.011
- Choudhury, S.M., Shah, S.L. and Thornhill, N.F. (2008), "Linear or nonlinear? A bicoherence-based measure of nonlinearity", Chap. 6, Adv. Indust. Control, Springer-Verlag, 77-91.
- Christodoulou, K., Ntotsios, E., Papadimitriou C. and Panetsos, P. (2008), "Structural model updating and prediction variability using pareto optimal models", Comput. Meth. Appl. Mech. Eng., 198(1), 138-149. https://doi.org/10.1016/j.cma.2008.04.010
- Coley, D.A. (1999), An introduction to genetic algorithms for scientists and engineers, World Scientific, Singapore.
- Corigliano, A. and Mariani, S. (2004), "Parameter identification in explicit structural dynamics, performance of the extended Kalman filter", Comput. Meth. Appl. Mech. Eng., 193(36-38), 3807-3835. https://doi.org/10.1016/j.cma.2004.02.003
- Faravelli, L., Ubertini, F. and Fuggini, C. (2011), "System identification of a super high-rise building via a stochastic subspace approach", Smart Struct. Syst., 7(2), 133-152. https://doi.org/10.12989/sss.2011.7.2.133
- Farrar, C. and Worden, K. (2007), "Structural health monitoring - preface", Philosoph. Transact. Roy. Soc. A, 365(1851), 299-301. https://doi.org/10.1098/rsta.2006.1926
- Fraraccio, G., Brugger, A. and Betti, R. (2008), "Identification and damage detection in structures subjected to base excitation", Exper. Mech., 48(4), 521-528. https://doi.org/10.1007/s11340-008-9124-6
- Gholizadeh, S. and Salajegheh, E. (2009), "Optimal design of structures subjected to time history loading by swarm intelligence and an advanced metamodel", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2936-2949. https://doi.org/10.1016/j.cma.2009.04.010
- Helton, J.C. and Davis, F.J. (2003), "Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems", Reliab. Eng. Syst. Saf., 81(1), 23-69. https://doi.org/10.1016/S0951-8320(03)00058-9
- Hernandez, E.M. and Bernal, D. (2008), "State estimation in structural systems with model uncertainties", J. Eng. Mech., 134(3), 252-257. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:3(252)
- Kalkan, E. and Chopra, A.K. (2010), "Practical guidelines to select and scale earthquake records for nonlinear response history analysis of structures", Usgs open file report 2010-1068, 126 pgs., U.S. Geological Survey, Menlo Park, CA.
- Katkhuda, H., Martinez, R. and Haldar, A. (2005), "Health assessment at local level with unknown input excitation", J. Struct. Eng., 131(6), 956-965. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(956)
- Kerschen, G., Worden, K., Vakakis, A. and Golinval, J. (2006), "Past, present and future of nonlinear system identification in structural dynamics", Mech. Syst. Signal Pr., 20(3), 505-592. https://doi.org/10.1016/j.ymssp.2005.04.008
- Kopsaftopoulos, F.P. and Fassois, S.D. (2013), "A functional model based statistical time series method for vibration based damage detection, localization, and magnitude estimation", Mech. Syst. Signal Pr., 39(1-2), 143-161. https://doi.org/10.1016/j.ymssp.2012.08.023
- Lin, J.W., Betti, R., Smyth, A.W. and Longman, R.W. (2001), "On-line identification of non-linear hysteretic structural systems using a variable trace approach", Earthq. Eng. Struct. Dyn., 30(9), 1279-1303. https://doi.org/10.1002/eqe.63
- Lourens, E., Papadimitriou, C., Gillijns, S., Reynders, E., De Roeck, G. and Lombaert, G. (2012), "Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors", Mech. Syst. Signal Pr., 29, 310-327. https://doi.org/10.1016/j.ymssp.2012.01.011
- Moaveni, B., He, X., Conte, J.P. and Restrepo, J.I. (2010), "Damage identification study of a seven-story full-scale building slice tested on the UCSD-NEES shake table", Struct. Safety, 32(5), 347-356. https://doi.org/10.1016/j.strusafe.2010.03.006
- Naets, F., Pastorino, R., Cuadrado, J., and Desmet W. (2013), "Online state and input force estimation for multibody models employing extended Kalman filtering", Multibody Syst. Dyn., July, 1-20.
- Piroddi, L. and Spinelli, W. (2003), "An identification algorithm for polynomial NARX models based on simulation error minimization", Int. J. Control, 76(17), 1767-1781. https://doi.org/10.1080/00207170310001635419
- Poulimenos, A.G. and Fassois, S.D. (2006), "Parametric time-domain methods for non-stationary random vibration modelling and analysis - a critical survey and comparison", Mech. Syst. Signal Pr., 20(4), 763-816. https://doi.org/10.1016/j.ymssp.2005.10.003
- PEER (2012), Peer ground motion database, http://peer.berkeley.edu/peer ground motion database.
- Rezaeian, S. and Der Kiureghian, A. (2010), "Simulation of synthetic ground motions for specified earthquake and site characteristics", Earthq. Eng. Struct. Dyn., 39(10), 1155-1180. https://doi.org/10.1002/eqe.997
- Rutherford, A., Park, G. and Farrar, C. (2007), "Nonlinear feature identification based on self-sensing impedance measurement for structural health assessment", Mech. Syst. Signal Pr., 21(1), 322-333. https://doi.org/10.1016/j.ymssp.2005.10.002
- Samara, P., Sakellariou, J., Fouskitakis, G., Hios, J. and Fassois, S. (2013), "Aircraft virtual sensor design via a time-dependent functional pooling narx methodology", Aerospace Sci. Technol., 29(1), 114-124. https://doi.org/10.1016/j.ast.2013.02.001
- Sapsis, T.P. and Lermusiaux, P.F.J. (2009), "Dynamically orthogonal field equations for continuous stochastic dynamical systems", Physica D: Nonlin. Phenom., 238(23), 2347-2360. https://doi.org/10.1016/j.physd.2009.09.017
- Smyth, A.W., Masri, S.F., Kosmatopoulos, E.B., Chassiakos, A.G. and Caughey, T.K. (2002), "Development of adaptive modeling techniques for non-linear hysteretic systems", Int. J. Nonlin. Mech., 37(8), 1435-1451. https://doi.org/10.1016/S0020-7462(02)00031-8
- Soize, C. and Ghanem, R. (2004), "Physical systems with random uncertainties, chaos representations with arbitrary probability measure", J. Scientific Comput. SIAM, 26(2), 395-410. https://doi.org/10.1137/S1064827503424505
- Spiridonakos, M. and Chatzi, E. (2012), "Metamodeling of structural systems through polynomial chaos arx models", International Conference on Uncertainty in Structural Dynamics (USD2012), Leuven, Belgium.
- Wagner, S.M. and Ferris, J.B. (2007), "A polynomial chaos approach to ARMA modeling and terrain characterization", SPIE 6564, Modeling and Simulation for Military Operations II, 65640M.
- Wei, H.L, Billings, S.A. and Liu, J. (2004), "Term and variable selection for non-linear system identification", Int. J. Control, 77(1), 86-110. https://doi.org/10.1080/00207170310001639640
- Worden, K. and Tomlinson, G. (2000), Nonlinearity in Structural Dynamics, Detection, Identification and Modelling, Taylor & Francis.
- Vanik, M.W., Beck, J.L. and Au, S.K. (2000), "Bayesian probabilistic approach to structural health monitoring", J. Eng. Mech., 126(7), 738-745. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(738)
- Yun, C.B. and Shinozuka, M. (1980), "Identification of nonlinear structural dynamics systems", J. Struct. Mech., 8(2), 187-203. https://doi.org/10.1080/03601218008907359
Cited by
- A State of the Art Review of Modal-Based Damage Detection in Bridges: Development, Challenges, and Solutions vol.7, pp.5, 2017, https://doi.org/10.3390/app7050510
- Bridge Damage Detection Based on Vibration Data: Past and New Developments vol.3, 2017, https://doi.org/10.3389/fbuil.2017.00004
- Surrogate Models for Oscillatory Systems Using Sparse Polynomial Chaos Expansions and Stochastic Time Warping vol.5, pp.1, 2017, https://doi.org/10.1137/16M1083621
- Simulation based improved seismic fragility analysis of structures vol.12, pp.5, 2015, https://doi.org/10.12989/eas.2017.12.5.569
- Real-Time Hybrid Simulation with Deep Learning Computational Substructures: System Validation Using Linear Specimens vol.2, pp.4, 2015, https://doi.org/10.3390/make2040026