• Title/Summary/Keyword: Regressive modeling

Search Result 47, Processing Time 0.018 seconds

A Study on Influential Factors in Mathematics Modeling Academic Achievement

  • Li, Mingzhen;Pang, Kun;Yu, Ping
    • Research in Mathematical Education
    • /
    • v.13 no.1
    • /
    • pp.31-48
    • /
    • 2009
  • Utilizing the path analysis method, the study explores the relationships among the influential factors in mathematics modeling academic achievement. The following conclusions are drawn: 1. Achievement motivation, creative inclination, cognitive style, the mathematical cognitive structure and mathematics modeling self-monitoring ability, those have significant correlation with mathematics modeling academic achievement; 2. Mathematical cognitive structure and mathematics modeling self-monitoring ability have significant and regressive effect on mathematics modeling academic achievement, and two factors can explain 55.8% variations of mathematics modeling academic achievement; 3. Achievement motivation, creative inclination, cognitive style, mathematical cognitive structure have significant and regressive effect on mathematics modeling self-monitoring ability, and four factors can explain 70.1% variations of mathematics modeling self-monitoring ability; 4. Achievement motivation, creative inclination, and cognitive style have significant and regressive effect on mathematical cognitive structure, and three factors can explain 40.9% variations of mathematical cognitive structure.

  • PDF

ARX Design Technique for Low Order Modeling of Backward-Facing-Step Flow Field (후향계단 유동장 저차 모델링을 위한 ARX 설계 기법)

  • Lee, Jin-Ik;Lee, Eun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.840-845
    • /
    • 2012
  • An ARX(Auto-Regressive eXogenous) modeling technique for vortex dynamics in the BFS(Backward Facing Step) flow field is proposed in this paper. In order for the modeling of the dynamics, the spatial and temporal modes are extracted through POD(Proper Orthogonal Decomposition) analysis. Determining the orders of the inputs and outputs for an ARX structure is carried out by the spectrum analysis and temporal mode analysis, respectively. The order of input delay terms is also determined by the flow velocity. Finally the coefficients of the ARX model are designed by using an artificial neural network.

Embedment of structural monitoring algorithms in a wireless sensing unit

  • Lynch, Jerome Peter;Sundararajan, Arvind;Law, Kincho H.;Kiremidjian, Anne S.;Kenny, Thomas;Carryer, Ed
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.285-297
    • /
    • 2003
  • Complementing recent advances made in the field of structural health monitoring and damage detection, the concept of a wireless sensing network with distributed computational power is proposed. The fundamental building block of the proposed sensing network is a wireless sensing unit capable of acquiring measurement data, interrogating the data and transmitting the data in real time. The computational core of a prototype wireless sensing unit can potentially be utilized for execution of embedded engineering analyses such as damage detection and system identification. To illustrate the computational capabilities of the proposed wireless sensing unit, the fast Fourier transform and auto-regressive time-series modeling are locally executed by the unit. Fast Fourier transforms and auto-regressive models are two important techniques that have been previously used for the identification of damage in structural systems. Their embedment illustrates the computational capabilities of the prototype wireless sensing unit and suggests strong potential for unit installation in automated structural health monitoring systems.

Spatio-temporal models for generating a map of high resolution NO2 level

  • Yoon, Sanghoo;Kim, Mingyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.803-814
    • /
    • 2016
  • Recent times have seen an exponential increase in the amount of spatial data, which is in many cases associated with temporal data. Recent advances in computer technology and computation of hierarchical Bayesian models have enabled to analyze complex spatio-temporal data. Our work aims at modeling data of daily average nitrogen dioxide (NO2) levels obtained from 25 air monitoring sites in Seoul between 2003 and 2010. We considered an independent Gaussian process model and an auto-regressive model and carried out estimation within a hierarchical Bayesian framework with Markov chain Monte Carlo techniques. A Gaussian predictive process approximation has shown the better prediction performance rather than a Hierarchical auto-regressive model for the illustrative NO2 concentration levels at any unmonitored location.

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.

A Study on Simulator for Computing Demand Rate Considering a Transformer Capacity (변압기 용량을 고려한 수용률 산출 시뮬레이터 개발에 관한 연구)

  • Kim, Young-Il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.4
    • /
    • pp.179-185
    • /
    • 2007
  • In this paper, the method of computing demand rate with respect to a transformer capacity is proposed and addressed to predict a future demand rate. The simulation data are taken from switchgears of a real medium voltage transformer. Data taken from the electrical instrument at 22.9 kVY power receiving panels are employed to evaluate the correlation between demand rate and power usage of transformer. It is verified a usefulness with respect to an proposed index of demand rate for transformer by using a least square error of regressive modeling, As a result of investigation and simulation on the spot to a few buildings, it is considered that there is necessity to make a partial amendment of demand rate being applicable currently for electrical energy saving in domestic.

Performance Improvement of Topic Modeling using BART based Document Summarization (BART 기반 문서 요약을 통한 토픽 모델링 성능 향상)

  • Eun Su Kim;Hyun Yoo;Kyungyong Chung
    • Journal of Internet Computing and Services
    • /
    • v.25 no.3
    • /
    • pp.27-33
    • /
    • 2024
  • The environment of academic research is continuously changing due to the increase of information, which raises the need for an effective way to analyze and organize large amounts of documents. In this paper, we propose Performance Improvement of Topic Modeling using BART(Bidirectional and Auto-Regressive Transformers) based Document Summarization. The proposed method uses BART-based document summary model to extract the core content and improve topic modeling performance using LDA(Latent Dirichlet Allocation) algorithm. We suggest an approach to improve the performance and efficiency of LDA topic modeling through document summarization and validate it through experiments. The experimental results show that the BART-based model for summarizing article data captures the important information of the original articles with F1-Scores of 0.5819, 0.4384, and 0.5038 in Rouge-1, Rouge-2, and Rouge-L performance evaluations, respectively. In addition, topic modeling using summarized documents performs about 8.08% better than topic modeling using full text in the performance comparison using the Perplexity metric. This contributes to the reduction of data throughput and improvement of efficiency in the topic modeling process.

Vortex Tube Modeling Using the System Identification Method (시스템 식별 방법을 이용한 볼텍스 튜브 모델링)

  • Han, Jaeyoung;Jeong, Jiwoong;Yu, Sangseok;Im, Seokyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.321-328
    • /
    • 2017
  • In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

Testing the Auto-regressive Cross-lagged Effects Between Relative Extrinsic Value Orientation and Life-satisfaction (상대적 외적 가치 지향과 삶의 만족 간 자기회귀교차지연 효과 검증)

  • Koo, Jaisun
    • Science of Emotion and Sensibility
    • /
    • v.22 no.4
    • /
    • pp.85-96
    • /
    • 2019
  • The relative extrinsic value orientation (REVO) means the relative importance to extrinsic values (e.g. wealth, fame and social approval) compared with intrinsic values (e.g. affiliation, self-acceptance and personal growth). This study aimed to investigate the causal relation between REVO and life-satisfaction using the auto-regressive cross-lagged modeling. For this purpose, 3rd, 5th, and 7th year data from the Korea Children and Youth Panel Survey (KCYPS) middle school 1st grade panel was analyzed (N = 2,259; 1,140 males and 1,119 females). The results are as follows; Firstly, positive auto-regressive effects of REVO and life-satisfaction were significant. Secondly, REVO was found to have negative and cross-lagged effect on life-satisfaction. However, cross-lagged effect from life-satisfaction to REVO was not significant. Finally, no gender difference was found in this relationship. These results suggest that low life satisfaction does not cause the relative extrinsic value orientation, but high relative extrinsic value orientation may cause low life satisfaction.

A Study on Diagnostics of Machining System with ARMA Modeling and Spectrum Analysis (ARMA 모델링과 스펙트럼분석법에 의한 가공시스템의 진단에 관한 연구)

  • 윤문철;조현덕;김성근
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.42-51
    • /
    • 1999
  • An experimental modeling of cutting and structural dynamics and the on-line detection of malfunction process is substantial not only for the investigation of the static and dynamic characteristics of cutting process but also for the analytic realization of diagnostic systems. In this regard, We have discussed on the comparative assessment of two recursive time series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision round shape machining such as turning, drilling and boring in mold and die making. In this study, simulation and experimental work were performed to show the malfunctioned behaviors. For this purpose, two new recursive approach (REIVM, RLSM) were adopted fur the on-line system identification and monitoring of a machining process, we can apply these new algorithm in real process for the detection of abnormal machining behaviors such as chipping, chatter, wear and round shape lobe waviness.

  • PDF