• Title/Summary/Keyword: Regression algorithm

Search Result 1,055, Processing Time 0.024 seconds

Optimization of Transonic Airfoil Using GA Based on Neural Network and Multiple Regression Model (유전 알고리듬과 반응표면을 이용한 천음속 익형의 최적설계)

  • Kim, Yun-Sik;Kim, Jong-Hun;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2556-2564
    • /
    • 2002
  • The design of airfoil had practiced by repeat tests in its first stage, though an airfoil has as been designed based on simulations according to techniques of computational fluid dynamics. Here, using of traditional optimization is unsuitable because a state of flux is hypersensitive to the shape of airfoil. Therefore the paper optimized the shape of airfoil in transonic region using a genetic algorithm (GA). Response surfaces are based on back propagation neural network (BPN) and regression model. Training data of BPN and regression model were obtained by computational fluid dynamic analysis using CFD-ACE, and each analysis has been designed by design of experiments.

A Fault Detection of Cyclic Signals Using Support Vector Machine-Regression (Support Vector Machine-Regression을 이용한 주기신호의 이상탐지)

  • Park, Seung-Hwan;Kim, Jun-Seok;Park, Cheong-Sool;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.3
    • /
    • pp.354-362
    • /
    • 2010
  • This paper presents a non-linear control chart based on support vector machine regression (SVM-R) to improve the accuracy of fault detection of cyclic signals. The proposed algorithm consists of the following two steps. First, the center line of the control chart is constructed by using SVM-R. Second, we calculate control limits by variances that are estimated by perpendicular and normal line of the center line. For performance evaluation, we apply proposed algorithm to the industrial data of the chemical vapor deposition process which is one of the semiconductor processes. The proposed method has better fault detection performance than other existing method

Sampling Based Approach to Bayesian Analysis of Binary Regression Model with Incomplete Data

  • Chung, Young-Shik
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.493-505
    • /
    • 1997
  • The analysis of binary data appears to many areas such as statistics, biometrics and econometrics. In many cases, data are often collected in which some observations are incomplete. Assume that the missing covariates are missing at random and the responses are completely observed. A method to Bayesian analysis of the binary regression model with incomplete data is presented. In particular, the desired marginal posterior moments of regression parameter are obtained using Meterpolis algorithm (Metropolis et al. 1953) within Gibbs sampler (Gelfand and Smith, 1990). Also, we compare logit model with probit model using Bayes factor which is approximated by importance sampling method. One example is presented.

  • PDF

Rotor flux Observer Using Robust Support Vector Regression for Field Oriented Induction Mmotor Drives (유도전동기 벡터제어를 위한 Support Vector Regression을 이용한 회전자자속 추정기)

  • Han Dong Chang;Back Woon Jae;Kim Sung Rag;Kim Han Kil;Lee Suk Gyu;Park Jung IL
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.70-78
    • /
    • 2005
  • In this paper, a novel rotor flux estimation method of an induction motor using support vector regression(SVR) is presented. Two well-known different flux models with respect to voltage and current are necessary to estimate the rotor flux of an induction motor. Training of SVR which the theory of the SVR algorithm leads to a quadratic programming(QP) problem. The proposed SVR rotor flux estimator guarantees the improvement of performance in the transient and steady state in spite of parameter variation circumstance. The validity and the usefulness of proposed algorithm are throughly verified through numerical simulation.

A Hybrid Approach for Regression Testing in Interprocedural Program

  • Singh, Yogesh;Kaur, Arvinder;Suri, Bharti
    • Journal of Information Processing Systems
    • /
    • v.6 no.1
    • /
    • pp.21-32
    • /
    • 2010
  • Software maintenance is one of the major activities of the software development life cycle. Due to the time and cost constraint it is not possible to perform exhaustive regression testing. Thus, there is a need for a technique that selects and prioritizes the effective and important test cases so that the testing effort is reduced. In an analogous study we have proposed a new variable based algorithm that works on variables using the hybrid technique. However, in the real world the programs consist of multiple modules. Hence, in this work we propose a regression testing algorithm that works on interprocedural programs. In order to validate and analyze this technique we have used various programs. The result shows that the performance and accuracy of this technique is very high.

NUMERICAL AND INTERFEROMETRIC ANALYSIS OF STARVATION EFFECT ON OIL FILM THICKNESS IN EHL CONDITION

  • Itoigawa, F.;Watanabe, K.;Nakamura, T.;Matsubara, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.77-78
    • /
    • 2002
  • A regression formula including the inlet film thickness as the parameter for the starvation factor in EHL condition is obtained by numerical analysis with Elord‘s cavitation algorithm. In addition, an apparatus for starved film thickness measurement by use of the white light interferometry is developed in order to verify the proposed regression formula. From observation results by this apparatus, the proposed regression formula can predict the reduction of central film thickness caused by starvation in a ball-plate contact with an uncertainty up to 10%

  • PDF

Development of Estimation Algorithm of Near-Surface Air Temperature for Warm and Cold Seasons in Korea (온난 및 한랭시즌의 우리나라 지상기온 평가 알고리즘 개발)

  • Kim, Do Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.11-16
    • /
    • 2015
  • Spatial and temporal information on near-surface air temperature is important for understanding global warming and climate change. In this study, the estimation algorithm of near-surface air temperature in Korea was developed by using spatial homogeneous surface information obtained from satellite remote sensing observations. Based on LST(Land Surface Temperature), NDWI(Normalized Difference Water Index) and NDVI(Normalized Difference Vegetation Index) as independent variables, the multiple regression model was proposed for the estimation of near-surface air temperature. The different regression constants and coefficients for warm and cold seasons were calculated for considering regional climate change in Korea. The near-surface air temperature values estimated from the multiple regression algorithm showed reasonable performance for both warm and cold seasons with respect to observed values (approximately $3^{\circ}C$ root mean-square error and nearly zero mean bias). Thus;the proposed algorithm using remotely sensed surface observations and the approach based on the classified warm and cold seasons may be useful for assessment of regional climate temperature in Korea.

Prediction Intervals for LS-SVM Regression using the Bootstrap

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.337-343
    • /
    • 2003
  • In this paper we present the prediction interval estimation method using bootstrap method for least squares support vector machine(LS-SVM) regression, which allows us to perform even nonlinear regression by constructing a linear regression function in a high dimensional feature space. The bootstrap method is applied to generate the bootstrap sample for estimation of the covariance of the regression parameters consisting of the optimal bias and Lagrange multipliers. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

Self-Organizing Fuzzy Modeling Using Creation of Clusters (클러스터 생성을 이용한 자기구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.334-340
    • /
    • 2002
  • This paper proposes a self-organizing fuzzy modeling which can create a new hyperplane-shaped cluster by applying multiple regression to input/output data with relatively large fuzzy entropy, add the new cluster to fuzzy rule base and adjust parameters of the fuzzy model in repetition. Tn the coarse tuning, weighted recursive least squared algorithm and fuzzy C-regression model clustering are used and in the fine tuning, gradient descent algorithm is used to adjust parameters of the fuzzy model precisely And learning rates are optimized by utilizing meiosis-genetic algorithm. To check the effectiveness and feasibility of the suggested algorithm, four representative examples for system identification are examined and the performance of the identified fuzzy model is demonstrated in comparison with that of the conventional fuzzy models.

Adaptive Obstacle Avoidance Algorithm using Classification of 2D LiDAR Data (2차원 라이다 센서 데이터 분류를 이용한 적응형 장애물 회피 알고리즘)

  • Lee, Nara;Kwon, Soonhwan;Ryu, Hyejeong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.348-353
    • /
    • 2020
  • This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.