• Title/Summary/Keyword: Region-Of-Interest Mask

Search Result 21, Processing Time 0.022 seconds

A Rapid Region-of-Interest Processing Technique using Mask Patterns for JPEG2000 (JPEG2000에서 마스크 패턴을 이용한 빠른 관심영역 처리 기법)

  • Lee, Jum-Sook;Ha, Seok-Woon;Park, Jae-Heung;Seo, Yeong-Geon;Kang, Ki-Jun;Hong, Seok-Won;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.19-27
    • /
    • 2010
  • An region of interest processing technique is to handle preferentially some part of an image dynamically according to region of interest of the users in JPEG2000 image. A small image is not important, but in a big image the specified region that the user indicated has to be handled preferentially because it takes long time to display the whole image. If the user indicates a region of the outline image, the browser masks the region and sends the mask information to the source that transmitted the image. The server which got the mask information preferentially sends the code blocks matching the masks. Here, quickly generating mask information is important, so, in this paper using predefined 48 mask patterns, selecting one of the patterns according to the distribution of ROI(Region-of-Interest) and background, we remarkably reduced the time computing the mask region. Blocks that the patterns are applied are the blocks mixed of ROI and background in a block. If a whole block is an ROI or a background, these patterns are not applied. As results, comparing to the method that precisely handles ROI and background, the quality is unsatisfactory but the processing time remarkably reduced.

An Adaptive ROI Mask Generation for ROI coding of JPEG2000 (JPEG200의 관심영역 부호화를 위한 적응적인 관심영역 마스크 생성 방법)

  • Kang, Ki-Jun;Seo, Yeong-Geon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.39-47
    • /
    • 2007
  • In this thesis, a method of generating an adaptable Region-Of-Interest(ROI) Mask for the Region-Of-Interest coding is suggested. In the method, an ROI Mask is generated using the information of the ROI designated by a user. In the existed method of ROI coding, after scanning all the pixels in order and discriminating an ROI, an ROI Mask is generated. But, in our method, after scanning a part of pixels based on the shape pattern of an ROI and discriminating a ROI by one code block unit, an ROI Mask is generated. Moreover, from the method, a pattern number, threshold of a ROI and background threshold parameter are provided. According to the result of its comparing test with the existed methods to show the usability, it is proved that our method is superior in speed to the existed ones.

  • PDF

Design and Implementation of Region Of Interest Coding using Mask (마스크 방식의 관심 영역 부호 설계와 구현)

  • 이제명;이호석;흥성수;김수희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.634-636
    • /
    • 2003
  • 본 논문은 마스크 방식의 관심 영역(ROI, Region Of Interest) 부호 설계와 구현에 대하여 제시한다. 관심 영역에 대한 정지 영상 압축 알고리즘은 웨이블릿 변환과 사용자가 지정한 관심 영역을 결합하여 설계하였다. 즉, 사용자가 지정한 관심 영역을 이용하여 관심 영역 마스크를 생성한다. 양자화 과정에서 웨이블릿 계수들을 각 레벨과 서브밴드로 구분하고 생성된 관심 영역 마스크 정보를 이용하여 양자화 과정을 처리하여 부호화한다. 관심 영역에 대하여서는 높은 영상 품질과 그리고 전체 영상에 대하여서는 높은 압축을 동시에 실현시킬 수 있는 마스크 방식의 관심 영역 부호화 알고리즘을 설계하고 구현하였다.

  • PDF

Tack Coat Inspection Using Unmanned Aerial Vehicle and Deep Learning

  • da Silva, Aida;Dai, Fei;Zhu, Zhenhua
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.784-791
    • /
    • 2022
  • Tack coat is a thin layer of asphalt between the existing pavement and asphalt overlay. During construction, insufficient tack coat layering can later cause surface defects such as slippage, shoving, and rutting. This paper proposed a method for tack coat inspection improvement using an unmanned aerial vehicle (UAV) and deep learning neural network for automatic non-uniform assessment of the applied tack coat area. In this method, the drone-captured images are exploited for assessment using a combination of Mask R-CNN and Grey Level Co-occurrence Matrix (GLCM). Mask R-CNN is utilized to detect the tack coat region and segment the region of interest from the surroundings. GLCM is used to analyze the texture of the segmented region and measure the uniformity and non-uniformity of the tack coat on the existing pavements. The results of the field experiment showed both the intersection over union of Mask R-CNN and the non-uniformity measured by GLCM were promising with respect to their accuracy. The proposed method is automatic and cost-efficient, which would be of value to state Departments of Transportation for better management of their work in pavement construction and rehabilitation.

  • PDF

An Adaptive Region-of-Interest Coding Based on EBCOT (EBCOT 기반의 적응적 관심영역 코딩)

  • Kang, Ki-Jun;Lee, Bu-Kwon;Seo, Yeong-Geon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1445-1454
    • /
    • 2006
  • To compress a specific part of an image with high quality or to transfer it, JPEG2000 standard offers an ROI(Region-of-Interest) image coding method. What is important in ROI coding is to process relative importance between ROI and background and to process ROI mask. We propose an adaptive ROI coding method supplemented the existing Implicit ROI coding and Modified implicit ROI coding to improve image quality and reduce ROI mask information. The proposed method is an EBCOT-based ROI coding that extracts ROI from the compressed bitstream, and gets the ROI mask information by classifying the codeblocks into 6 patterns. The information includes the pattern type(3bit) and the width(5bit) expressing the boundary between two regions for each codeblock. As a result, the method shows an excellent compression performance in ROI region as well as in the whole region of an image.

  • PDF

A Fine Dust Measurement Technique using K-means and Sobel-mask Edge Detection Method (K-means와 Sobel-mask 윤곽선 검출 기법을 이용한 미세먼지 측정 방법)

  • Lee, Won-Hyeung;Seo, Ju-Wan;Kim, Ki-Yeon;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 2022
  • In this paper, we propose a method of measuring Fine dust in images using K-means and Sobel-mask based edge detection techniques using CCTV. The proposed algorithm collects images using a CCTV camera and designates an image range through a region of interest. When clustering is completed by applying the K-means algorithm, outline is detected through Sobel-mask, edge strength is measured, and the concentration of fine dust is determined based on the measured data. The proposed method extracts the contour of the mountain range using the characteristics of Sobel-mask, which has an advantage in diagonal measurement, and shows the difference in detection according to the concentration of fine dust as an experimental result.

A Revised Dynamic ROI Coding Method Based On The Automatic ROI Extraction For Low Depth-of-Field JPEG2000 Images (낮은 피사계 심도 JPEG2000 이미지를 위한 자동 관심영역 추출기반의 개선된 동적 관심영역 코딩 방법)

  • Park, Jae-Heung;Kim, Hyun-Joo;Shim, Jong-Chae;Yoo, Chang-Yeul;Seo, Yeong-Geon;Kang, Ki-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.63-71
    • /
    • 2009
  • In this study, we propose a revised dynamic ROI (Region-of-Interest) coding method in which the focused ROI is automatically extracted without help from users during the recovery process of low DOF (Depth-of-Field) JPEG2000 image. The proposed method creates edge mask information using high frequency sub-band data on a specific level in DWT (Discrete Wavelet Transform), and then identifies the edge code block for a high-speed ROI extraction. The algorithm scans the edge mask data in four directions by the unit of code block and identifies the edge code block simply and fastly using a edge threshold. As the results of experimentation applying for Implicit method, the proposed method showed the superiority in the side of speed and quality comparing to the existing methods.

A Slope Information Based Fast Mask Generation Technique for ROI Coding (관심영역 코딩을 위한 기울기 정보 기반의 빠른 마스크 생성 기법)

  • Park, Sun-Hwa;Seo, Yeong-Geon;Lee, Bu-Kweon;Kang, Ki-Jun;Kim, Ho-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.81-89
    • /
    • 2009
  • To support dynamic Region-of-Interest(ROI) in JPEG2000, a fast ROI mask generation is needed. In the existing methods of ROI coding, after scanning all the pixels in order and discriminating ROI, an ROI mask has been generated. Our method scans 4 pixels of the corners in one code block, and then based on those informations, scans the edges from the corners to get the boundaries of ROI and background. These informations are consisted of a distributed information of ROI and two coordinates of the pixels, which are the points the edges and the boundaries meet. These informations are transmitted to encoder and supported for fast ROI mask generation. There were no great differences between the proposed method and the existing methods in quality, but the proposed method showed superiority in speed.

Feasibility study of the usefulness of SRS thermoplastic mask for head & neck cancer in tomotherapy (두경부 종양의 토모치료 시 정위적방사선수술 마스크의 유용성 평가에 대한 연구)

  • Jeon, Seong Jin;Kim, Chul Jong;Kwon, Dong Yeol;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.355-362
    • /
    • 2014
  • Purpose : When head&neck cancer radiation therapy, thermoplastic mask is applied for patients with fixed. The purpose of this study is to evaluate usefulness of thermoplastic mask for SRS in tomotherapy by conparison with the conventional mask. Materials and Methods : Typical mask(conventional mask, C-mask) and mask for SRS are used to fix body phantom(rando phantom) on the same iso centerline, then simulation is performed. Tomotherapy plan for orbit and salivary glands is made by treatment planning system(TPS). A thick portion and a thin portion located near the treatment target relative to the mask S-mask are defined as region of interest for surface dose dosimetry. Surface dose variation depending on the type of mask was analyzed by measuring the TPS and EBT film. Results : Surface dose variation due to the type of mask from the TPS is showed in orbit and salivary glands 0.65~2.53 Gy, 0.85~1.84 Gy, respectively. In case of EBT film, -0.2~3.46 Gy, 1.04~3.02 Gy. When applied to the S-mask, in TPS and Gafchromic EBT3 film, substrantially 4.26%, 5.82% showed maximum changing trend, respectively. Conclusion : To apply S-mask for tomotherapy, surface dose is changed, but the amount is insignificant and be useful when treatment target is close critical organs because decrease inter and intra fractional variation.

An Automatic ROI Extraction and Its Mask Generation based on Wavelet of Low DOF Image (피사계 심도가 낮은 이미지에서 웨이블릿 기반의 자동 ROI 추출 및 마스크 생성)

  • Park, Sun-Hwa;Seo, Yeong-Geon;Lee, Bu-Kweon;Kang, Ki-Jun;Kim, Ho-Yong;Kim, Hyung-Jun;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.93-101
    • /
    • 2009
  • This paper suggests a new algorithm automatically searching for Region-of-Interest(ROI) with high speed, using the edge information of high frequency subband transformed with wavelet. The proposed method executes a searching algorithm of 4-direction object boundary by the unit of block using the edge information, and detects ROIs. The whole image is splitted by $64{\times}64$ or $32{\times}32$ sized blocks and the blocks can be ROI block or background block according to taking the edges or not. The 4-directions searche the image from the outside to the center and the algorithm uses a feature that the low-DOF image has some edges as one goes to center. After searching all the edges, the method regards the inner blocks of the edges as ROI, and makes the ROI masks and sends them to server. This is one of the dynamic ROI method. The existing methods have had some problems of complicated filtering and region merge, but this method improved considerably the problems. Also, it was possible to apply to an application requiring real-time processing caused by the process of the unit of block.