• Title/Summary/Keyword: Region growing algorithm

Search Result 91, Processing Time 0.027 seconds

Efficient Signal Filling Method Using Watershed Algorithm for MRC-based Image Compression (MRC 기반의 영상 부호화를 위한 분수령 알고리즘을 이용한 효과적인 신호 채움 기법)

  • Park, Sang-Hyo;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.21-30
    • /
    • 2015
  • Image coding based on mixed raster content model generates don't care regions (DCR) in foreground and background layers, and its overall coding performance is greatly affected by region filling methods for DCRs. Most conventional methods for DCR filling fail in utilizing the local signal properties in hole regions and thus the high frequency components in non-DCR regions are reflected into DCR after signal filling. In addition, further high frequency components are induced to the filled signal because of signal discontinuities in the boundary of DCR. To solve this problem, a new DCR filling algorithm using the priority-based adaptive region growing is proposed in this paper. The proposed method uses the watershed algorithm and the flooding priority of each pixel for region filling is determined from the degree of smoothness in the neighborhood area. By growing the filled region into DCR based on the computed priority, the expansion of high-textured area can be minimized which can improve the overall coding performance. Experimental results show that the proposed method outperforms conventional algorithms.

Image Segmentation and Labeling Using Clustering and Fuzzy Algorithm (Clustering 기법과 Fuzzy 기법을 이용한 영상 분할과 라벨링)

  • 이성규;김동기;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.241-241
    • /
    • 2000
  • In this Paper, we present a new efficient algorithm that can segment an object in the image. There are many algorithms for segmentation and many studies for criteria or threshold value. But, if the environment or brightness is changed, their would not be suitable. Accordingly, we apply a clustering algorithm for adopting and compensating environmental factors. And applying labeling method, we try arranging segment by the similarity that calculated with the fuzzy algorithm. we also present simulations for searching an object and show that the algorithm is somewhat more efficient than the other algorithm.

  • PDF

3D Medical Image Segmentation Using Region-Growing Based Tracking (영역 확장 기반 추적을 이용한 3차원 의료 영상 분할 기법)

  • Ko S.;Yi J.;Lim J.;Ra J. B.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.239-246
    • /
    • 2000
  • In this paper. we propose a semi-automatic segmentation algorithm to extract organ in 3D medical data by using a manually segmentation result in a sing1e slice. Generally region glowing based tracking method consists of 3 steps object projection. seed extraction and boundary decision by region growing. But because the boundary between organs in medical data is vague, improper seeds make the boundary dig into the organ or extend to the false region. In the proposed algorithm seeds are carefully extracted to find suitable boundaries between organs after region growing. And the jagged boundary at low gradient region after region growing is corrected by post-processing using Fourier descriptor. Also two-path tracking make it possible to catch up newly appeared areas. The proposed algorithm provides satisfactory results in segmenting 1 mm distance kidneys from X-rav CT body image set of 82 slices.

  • PDF

Sclera Segmentation for the Measurement of Conjunctival Injection (결막 충혈도 측정을 위한 공막 영상 분할)

  • Bae, Jang-Pyo;Kim, Kwang-Gi;Jeong, Chang-Bu;Yang, Hee-Kyung;Hwang, Jeong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1142-1153
    • /
    • 2010
  • Conjunctival injection is the initial symptom of various eye diseases such as conjunctivitis, keratitis, or uveitis. The quantification of conjunctival injection may help the diagnosis and follow-up evaluation of various eye diseases. The size of the sclera is an important factor for the quantification of conjunctival injection. However, previous manual segmentation is time-consuming.Automatic segmentation is needed to extract the objective region of interest. This paper proposed a method based on the level set algorithm to segment the sclera from an anterior eye image. The initial model of the level set algorithm is calculated using the Lab color space, k-means algorithm and the geometric information. The level set algorithm was applied to the images in which the valley between the eyeball and skin was enhanced using the hessian analysis. This algorithm was tested with 52 images of the anterior eye segment. Results showed that the proposed method performs better than those with the level set algorithm using an arbitrary circle, or the region growing algorithm with color information. The proposed method for the segmentation of sclera may become an important component for the objective measurement of the conjunctival injection.

As-built modeling of piping system from terrestrial laser-scanned point clouds using normal-based region growing

  • Kawashima, Kazuaki;Kanai, Satoshi;Date, Hiroaki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-26
    • /
    • 2014
  • Recently, renovations of plant equipment have been more frequent because of the shortened lifespans of the products, and as-built models from large-scale laser-scanned data is expected to streamline rebuilding processes. However, the laser-scanned data of an existing plant has an enormous amount of points, captures intricate objects, and includes a high noise level, so the manual reconstruction of a 3D model is very time-consuming and costly. Among plant equipment, piping systems account for the greatest proportion. Therefore, the purpose of this research was to propose an algorithm which could automatically recognize a piping system from the terrestrial laser-scanned data of plant equipment. The straight portion of pipes, connecting parts, and connection relationship of the piping system can be recognized in this algorithm. Normal-based region growing and cylinder surface fitting can extract all possible locations of pipes, including straight pipes, elbows, and junctions. Tracing the axes of a piping system enables the recognition of the positions of these elements and their connection relationship. Using only point clouds, the recognition algorithm can be performed in a fully automatic way. The algorithm was applied to large-scale scanned data of an oil rig and a chemical plant. Recognition rates of about 86%, 88%, and 71% were achieved straight pipes, elbows, and junctions, respectively.

Automatic Segmentation of Lung, Airway and Pulmonary Vessels using Morphology Information and Advanced Rolling Ball Algorithm (형태학 정보와 개선된 롤링 볼 알고리즘을 이용한 폐, 기관지 및 폐혈관 자동 분할)

  • Cho, Joon-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • In this paper, the algorithm that can automatically segment the lung, the airway and the pulmonary vessels in a chest CT was proposed. The proposed method is progressed in three steps. In the first step, the lung and the airway are segmented by the region growing law through the optimal threshold and three-dimensional labeling. In the second, from the start point to the first carina of the airway is segmented by the deduction operation, and the next airway of the bifurcations are segmented by applying a variable threshold technique. In the third step, the left/right lungs are divided by the restoration process for the lung, and the outside of lungs for abnormal is checked by applying the advanced rolling ball algorithm, and if abnormal is found, that part is removed, and it is restored to the normal lungs by connecting the outside of the lung in the form of second-order polynomial. Finally, pulmonary vessels are segmented by applying the three-dimensional connected component labeling method and three-dimensional region growing method. As the results of simulation, it could be confirmed that the pulmonary vascular is accurately divided without loss of tissue around lung.

Contour detection of hippocampus using Dynamic Contour Model and Region Growing (영역확장법과 동적외곽선모델을 이용한 해마(hippocampus)의 외곽선 검출)

  • Jang, D.P.;Kim, H.D.;Lee, D.S.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.116-118
    • /
    • 1997
  • In hippocampal morphology Abnormalities, including unilateral or bilateral volume loss, are known to occur in epilepsy, Alzheimer's disease, and in certain amnestic syndromes. To detect such abnormalities in hippocampal morphology, we present a method that combines region growing and dynamic contour model to detect hippocampus from MRI brain data. The segmentation process is performed two steps. First region growing with a seed point is performed in the region of hippocampus and the initial contour of dynamic contour model is obtained. Second, the initial contour is modified on the basis of criteria that integrate energy with contour smoothness and the image gradient along the contour. As a result, this method improves fairly sensitivity to the choice of the initial seed point, which is often seen by conventional contour model. The power and practicality of this method have been tested on two brain datasets. Thus, we have developed an effective algorithm to extract hippocampus from MRI brain data.

  • PDF

Algorithm for automatic recognition of corpus callosum from saggital brain MR images (두뇌 자기공명영상에서의 corpus callosum의 자동인식 알고리즘)

  • Huh, S.;Lee, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.62-63
    • /
    • 1998
  • In this paper, a new method to find the corpus callosum from sagittal brain MR images is proposed, which uses the statistical characteristics and shape information of corpus callosum. First, we extract regions satisfying the statistical characteristics of the corpus callosum and then find a region matching the shape information. In order to match the shape information, a new directed window region growing algorithm is proposed instead of using conventional contour matching algorithms. Using the proposed algorithm, we adaptively relax the statistical requirement until we find a region matching the shape information. Experiments show very promising results.

  • PDF

A study on segmentation of medical image using fuzzy set theory (퍼지 이론을 이용한 의료 영상 특징 추출에 관한 연구)

  • 김형석;한영오;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.741-745
    • /
    • 1991
  • This paper describes a feature extraction in digitized chest X-ray image and CT head Image. There are Extraction, Thresholding, Region G rowing, Split-Merge and Relaxation in feature extraction technique. In this study, Region Growing System was realized and Fuzzy Set Theory was applied in order to extract the vague region which the conventional method has difficulties in extracting. The performance of proposed algorithm was proved by being applied to chest X-ray image and CT head image.

  • PDF

High Resolution Satellite Image Segmentation Algorithm Development Using Seed-based region growing (시드 기반 영역확장기법을 이용한 고해상도 위성영상 분할기법 개발)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.421-430
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Improved Seeded Region Growing (ISRG) and Region merging. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained multi-spectral edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying ISRG to consider spectral and edge information. Finally the region merging process, integrating region texture and spectral information, was carried out to get the final segmentation result. The accuracy assesment was done using the unsupervised objective evaluation method for evaluating the effectiveness of the proposed method. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.