• Title/Summary/Keyword: Regenerative-medicine

Search Result 409, Processing Time 0.023 seconds

Study on Significance and limitations of the Enactment of the Advanced Regenerative Bio Act (첨단재생바이오법의 제정 의의와 제한점)

  • Sohn, Seong Goo;Kwon, Kyeng Hee
    • The Korean Society of Law and Medicine
    • /
    • v.22 no.4
    • /
    • pp.159-184
    • /
    • 2021
  • The significance of the enactment of the 「Act On The Safety Of And Support For Advanced Regenerative Medicine And Advanced Biological Products」 is to break away from the regulation of the Pharmaceutical Affairs Act and expand patient treatment opportunities through a medical technology approach to regenerative medicine, which is essentially a medical practice called 'transplantation'. However, more than a year after the law was enacted, clinical study has not been activated, with not a single high-risk study approved by the Ministry of Food and Drug Safety being approved. The reason is that despite the legal purpose of expanding patient treatment opportunities, the data requirements for clinical study approval are set in connection with drug development despite the insufficient legal basis, making it difficult for many researchers to meet the data requirements. Prior to the enactment of the Act, submitted data for clinical study on cell therapy products within the Pharmaceutical Affairs Act were cosiderably exempted from quality and non-clinical test data, but with the enforcement of the Advanced Regenerative Bio Act, quality and non-clinical test data are required in accordance with pharmaceuticals when applying for approval of a clinical study plan. To rectify this, when considering the identity of clinical study on advanced regenerative medicine to expand treatment opportunities, recognize that there are limitations in connection with drug development. And it is necessary to preserve the identity of clinical study on advanced regenerative medicine, and on the other hand, in the case of drug product approval, clinical study results should be utilized while specifying usage requirements. Therefore, with the power of the market and the voluntary motive of the clinical researcher, it is necessary to prepare the necessary data by themselves rather than the basic requirements for clinical study approval.

A Study on Recent Policy and Legislation Trend of the Stem Cell/Regenerative Medicine in Japan (최근 일본의 줄기세포·재생의료에 관한 정책 및 입법 동향)

  • Lee, Min-Kyu;Ryoo, Hwa-Shin
    • The Korean Society of Law and Medicine
    • /
    • v.16 no.1
    • /
    • pp.191-219
    • /
    • 2015
  • The Japanese government has announced that it would invest 30 billion yen in iPS cell research for the next 10 year, and the Japan National Assembly has made an act that supports the iPS cell research. This study analyzes 1) the current trend and application field of stem cell research under Japan; 2) recent policy and regulation change in stem cell research and its application under Japan. This treatise reviews about "Act for Promoting Regenerative Medicine", "Act for Assuring Safety of Regenerative Medicine", and "the Revision of Pharmaceutical Act under Japan. This study may serve as the fundamental reference for the improvements of legal and institutional systems with regard to regulations on the stem cell research under Korea.

  • PDF

Novel Discovery of LINE-1 in a Korean Individual by a Target Enrichment Method

  • Shin, Wonseok;Mun, Seyoung;Kim, Junse;Lee, Wooseok;Park, Dong-Guk;Choi, Seungkyu;Lee, Tae Yoon;Cha, Seunghee;Han, Kyudong
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.87-95
    • /
    • 2019
  • Long interspersed element-1 (LINE-1 or L1) is an autonomous retrotransposon, which is capable of inserting into a new region of genome. Previous studies have reported that these elements lead to genomic variations and altered functions by affecting gene expression and genetic networks. Mounting evidence strongly indicates that genetic diseases or various cancers can occur as a result of retrotransposition events that involve L1s. Therefore, the development of methodologies to study the structural variations and interpersonal insertion polymorphisms by L1 element-associated changes in an individual genome is invaluable. In this study, we applied a systematic approach to identify human-specific L1s (i.e., L1Hs) through the bioinformatics analysis of high-throughput next-generation sequencing data. We identified 525 candidates that could be inferred to carry non-reference L1Hs in a Korean individual genome (KPGP9). Among them, we randomly selected 40 candidates and validated that approximately 92.5% of non-reference L1Hs were inserted into a KPGP9 genome. In addition, unlike conventional methods, our relatively simple and expedited approach was highly reproducible in confirming the L1 insertions. Taken together, our findings strongly support that the identification of non-reference L1Hs by our novel target enrichment method demonstrates its future application to genomic variation studies on the risk of cancer and genetic disorders.

Alpha-1,3-galactosyltransferase-deficient miniature pigs produced by serial cloning using neonatal skin fibroblasts with loss of heterozygosity

  • Kim, Young June;Ahn, Kwang Sung;Kim, Minjeong;Kim, Min Ju;Ahn, Jin Seop;Ryu, Junghyun;Heo, Soon Young;Park, Sang-Min;Kang, Jee Hyun;Choi, You Jung;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.439-445
    • /
    • 2017
  • Objective: Production of alpha-1,3-galactosyltransferase (${\alpha}GT$)-deficient pigs is essential to overcome xenograft rejection in pig-to-human xenotransplantation. However, the production of such pigs requires a great deal of cost, time, and labor. Heterozygous ${\alpha}GT$ knockout pigs should be bred at least for two generations to ultimately obtain homozygote progenies. The present study was conducted to produce ${\alpha}GT$-deficient miniature pigs in much reduced time using mitotic recombination in neonatal ear skin fibroblasts. Methods: Miniature pig fibroblasts were transfected with ${\alpha}GT$ gene-targeting vector. Resulting gene-targeted fibroblasts were used for nuclear transfer (NT) to produce heterozygous ${\alpha}GT$ gene-targeted piglets. Fibroblasts isolated from ear skin biopsies of these piglets were cultured for 6 to 8 passages to induce loss of heterozygosity (LOH) and treated with biotin-conjugated IB4 that binds to galactose-${\alpha}$-1,3-galactose, an epitope produced by ${\alpha}GT$. Using magnetic activated cell sorting, cells with monoallelic disruption of ${\alpha}GT$ were removed. Remaining cells with LOH carrying biallelic disruption of ${\alpha}GT$ were used for the second round NT to produce homozygous ${\alpha}GT$ gene-targeted piglets. Results: Monoallelic mutation of ${\alpha}GT$ gene was confirmed by polymerase chain reaction in fibroblasts. Using these cells as nuclear donors, three heterozygous ${\alpha}GT$ gene-targeted piglets were produced by NT. Fibroblasts were collected from ear skin biopsies of these piglets, and homozygosity was induced by LOH. The second round NT using these fibroblasts resulted in production of three homozygous ${\alpha}GT$ knockout piglets. Conclusion: The present study demonstrates that the time required for the production of ${\alpha}GT$-deficient miniature pigs could be reduced significantly by postnatal skin biopsies and subsequent selection of mitotic recombinants. Such procedure may be beneficial for the production of homozygote knockout animals, especially in species, such as pigs, that require a substantial length of time for breeding.

Dental-derived cells for regenerative medicine: stem cells, cell reprogramming, and transdifferentiation

  • Young-Dan Cho;Kyoung-Hwa Kim;Yong-Moo Lee;Young Ku;Yang-Jo Seol
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.6
    • /
    • pp.437-454
    • /
    • 2022
  • Embryonic stem cells have been a popular research topic in regenerative medicine owing to their pluripotency and applicability. However, due to the difficulty in harvesting them and their low yield efficiency, advanced cell reprogramming technology has been introduced as an alternative. Dental stem cells have entered the spotlight due to their regenerative potential and their ability to be obtained from biological waste generated after dental treatment. Cell reprogramming, a process of reverting mature somatic cells into stem cells, and transdifferentiation, a direct conversion between different cell types without induction of a pluripotent state, have helped overcome the shortcomings of stem cells and raised interest in their regenerative potential. Furthermore, the potential of these cells to return to their original cell types due to their epigenetic memory has reinforced the need to control the epigenetic background for successful management of cellular differentiation. Herein, we discuss all available sources of dental stem cells, the procedures used to obtain these cells, and their ability to differentiate into the desired cells. We also introduce the concepts of cell reprogramming and transdifferentiation in terms of genetics and epigenetics, including DNA methylation, histone modification, and non-coding RNA. Finally, we discuss a novel therapeutic avenue for using dental-derived cells as stem cells, and explain cell reprogramming and transdifferentiation, which are used in regenerative medicine and tissue engineering.

Effects of Photobiomodulation on Stem Cells Important for Regenerative Medicine

  • Chang, So-Young;Carpena, Nathaniel T.;Kang, Bong Jin;Lee, Min Young
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.134-141
    • /
    • 2020
  • The use of stem cell therapy to treat various diseases has become a promising approach. The ability of stem cells to self-renew and differentiate can contribute significantly to the success of regenerative medical treatments. In line with these expectations, there is a great need for an efficient research methodology to differentiate stem cells into their specific targets. Photobiomodulation (PBM), formerly known as low-level laser therapy (LLLT), is a relatively non-invasive technique that has a therapeutic effect on damaged tissue or cells. Recent advances in adapting PBM to stem cell therapy showed that stem cells and progenitor cells respond favorably to light. PBM stimulates different types of stem cells to enhance their migration, proliferation, and differentiation in vitro and in vivo. This review summarizes the effects of PBM on targeted differentiation across multiple stem cell lineages. The analytical expertise gained can help better understand the current state and the latest findings in PBM and stem cell therapy.

Establishment and Maintenance of Embryonic Stem-like Cell Lines from In Vitro Produced Bovine Blastocysts (체외수정 유래 소 배반포로부터 유사 배아 줄기 세포의 확립 및 유지)

  • Lee, Yu-Yeon;Kim, Sun-Uk;Kim, Ji-Su;Song, Bong-Seok;Cho, Yoon-Jeong;Park, Jung-Sun;Yu, Dae-Yeul;Jin, Dong-Il;Lee, Kyung-Kwang;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.31 no.3
    • /
    • pp.215-220
    • /
    • 2007
  • This study was conducted to examine the establishment of bovine ES-like cells having pluripotency. The hatched blastocysts derived from culture of in vitro fertilized embryos for 10 to 12 days dissociated mechanically into ICM-and trophectoderm-rich clumps using needle, and cultured onto mitotically-inactivated MEF feeder layer. The primary colonies originated from ICM cells were detached mechanically 7 days after seeding and subsequent subculture was conducted at intervals of every 5 to 7 days. Two ES -like cell lines were established and maintained over 40 passages. Self-renewal of the established lines was confirmed by examining the alkaline phosphatase activity, stem cell-specific marker profiles including SSEA isotopes, Oct-4 and STAT3. Moreover, the established cell lines could produce anchorage-independent embryoid bodies (EBs) with gradual decrease of Oct-4 transcript level in time-dependent manner.

Downregulated microRNAs in the colorectal cancer: diagnostic and therapeutic perspectives

  • Hernandez, Rosa;Sanchez-Jimenez, Ester;Melguizo, Consolacion;Prados, Jose;Rama, Ana Rosa
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.563-571
    • /
    • 2018
  • Colorectal cancer (CRC), the third most common cancer in the world, has no specific biomarkers that facilitate its diagnosis and subsequent treatment. The miRNAs, small single-stranded RNAs that repress the mRNA translation and trigger the mRNA degradation, show aberrant levels in the CRC, by which these molecules have been related with the initiation, progression, and drug-resistance of this cancer type. Numerous studies show the microRNAs influence the cellular mechanisms related to the cell cycle, differentiation, apoptosis, and migration of the cancer cells through the post-transcriptionally regulated gene expression. Specific patterns of the upregulated and down-regulated miRNA have been associated with the CRC diagnosis, prognosis, and therapeutic response. Concretely, the downregulated miRNAs represent attractive candidates, not only for the CRC diagnosis, but for the targeted therapies via the tumor-suppressing microRNA replacement. This review shows a general overview of the potential uses of the miRNAs in the CRC diagnosis, prognosis, and treatment with a special focus on the downregulated ones.

Regenerative medicine using dental tissue derived induced pluripotent stem cell-biomaterials complex (구강조직유래 유도만능줄기세포-생체재료 복합체의 재생의료 동향)

  • Jun, Soo-Kyung;Lee, Hae-Hyoung;Kim, Hae-Won;Lee, Jung-Hwan
    • The Journal of the Korean dental association
    • /
    • v.55 no.12
    • /
    • pp.828-840
    • /
    • 2017
  • In recent years, many researchers and clinicians found interest in regenerative medicine using induced pluripotent stem cells (iPSCs) with biomaterials due to their pluripotency, which is able to differentiate into any type of cells without human embryo, which of use is ethically controversial. However, there are limitations to make iPSCs from adult somatic cells due to their low stemness and donor site morbidity. Recently, to overcome above drawbacks, dental tissue-derived iPSCs have been highlighted as a type of alternative sources for their high stemness, easy gathering, and their complex (ectomesenchymal) origin, which easily differentiate them to various cell types for nerve, vessel, and other dental tissue regeneration. In other part, utilizing biomaterials for regenerative medicine using cell is recently highlighted because they can modulate cell adhesion, proliferation and (de)differentiation. Therefore, this paper will convey the overview of advantages and drawbacks of dental tissue-derived iPSCs and their future application with biomaterials.

  • PDF

Identification of Endothelial Specific Region in the Intracellular Adhesion Molecule-2 (ICAM2) Promoter of Miniature Pig

  • Jang, Hoon;Jang, Won-Gu;Kim, Dong Un;Kim, Eun-Jung;Hwang, Sung Soo;Oh, Keon Bong;Lee, Jeong-Woong
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.207-212
    • /
    • 2012
  • The shortage of human organs for transplantation has induced the research on the possibility of using animal as porcine. However, pig to human transplantation as known as xeno-transplantation has major problem as immunorejection. Recently, the solutions of pig to human xenotransplantation are commonly mentioned as having a genetically modification which include alpha 1, 3 galatosyl transferase knockout (GTKO) and immune-suppressing gene transgenic model. Unfortunately, the expression level of transgenic gene is very low activity. Therefore, development of gene overexpression system is the most urgent issue. Also, the tissue specific overexpression system is very important. Because most blood vessels are endothelial cells, establishment of the endothelial-specific promoter is attractive candidates for the introduction of suppressing immunorejection. In this study, we focus the ICAM2 promoter which has endothelial-specific regulatory region. To detect the regulatory region of ICAM2 promoter, we cloned 3.7 kb size mini-pig ICAM2 promoter. We conduct serial deletion of 5' flanking region of mini-pig ICAM2 promoter then selected promoter size as 1 kb, 1.5 kb, 2 kb, 2.5 kb, and 3 kb. To analyze promoter activity, luciferase assay system was conducted among these vectors and compare endothelial activity with epithelial cells. The reporter gene assay revealed that ICAM2 promoter has critical activity in endothelial cells (CPAE) and 1 kb size of ICAM2 promoter activity was significantly increased. Taken together, our studies suggest that mini-pig ICMA2 promoter is endothelial cell specific overexpression promoter and among above all size of promoters, 1 kb size promoter is optimal candidate to overcome the vascular immunorejection in pig to human xenotransplantation.