Regenerative medicine using dental tissue derived induced pluripotent stem cell-biomaterials complex

구강조직유래 유도만능줄기세포-생체재료 복합체의 재생의료 동향

  • Jun, Soo-Kyung (Department of Biomaterials Science, College of Dentistry, Dankook University) ;
  • Lee, Hae-Hyoung (Department of Biomaterials Science, College of Dentistry, Dankook University) ;
  • Kim, Hae-Won (Department of Biomaterials Science, College of Dentistry, Dankook University) ;
  • Lee, Jung-Hwan (Department of Biomaterials Science, College of Dentistry, Dankook University)
  • 전수경 (단국대학교 생체재료학교실) ;
  • 이해형 (단국대학교 생체재료학교실) ;
  • 김해원 (단국대학교 생체재료학교실) ;
  • 이정환 (단국대학교 생체재료학교실)
  • Received : 2017.07.18
  • Accepted : 2017.09.01
  • Published : 2017.12.01

Abstract

In recent years, many researchers and clinicians found interest in regenerative medicine using induced pluripotent stem cells (iPSCs) with biomaterials due to their pluripotency, which is able to differentiate into any type of cells without human embryo, which of use is ethically controversial. However, there are limitations to make iPSCs from adult somatic cells due to their low stemness and donor site morbidity. Recently, to overcome above drawbacks, dental tissue-derived iPSCs have been highlighted as a type of alternative sources for their high stemness, easy gathering, and their complex (ectomesenchymal) origin, which easily differentiate them to various cell types for nerve, vessel, and other dental tissue regeneration. In other part, utilizing biomaterials for regenerative medicine using cell is recently highlighted because they can modulate cell adhesion, proliferation and (de)differentiation. Therefore, this paper will convey the overview of advantages and drawbacks of dental tissue-derived iPSCs and their future application with biomaterials.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Yamanaka S. Induced pluripotent stemcells: past, present, and future. Cell Stem Cell 2012;10(6):678?684 https://doi.org/10.1016/j.stem.2012.05.005
  2. Kriks S, Shim JW, Piao J, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 2011;480(7378):547-551 https://doi.org/10.1038/nature10648
  3. Takayama N, Nishimura S, Nakamura S, et al. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med 2010;207(13):2817-2830 https://doi.org/10.1084/jem.20100844
  4. Nori S, Okada Y, Yasuda A, et al. Grafted humaninduced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A 2011;108(40):16825-16830 https://doi.org/10.1073/pnas.1108077108
  5. Okamoto S, Takahashi M. Induction of retinal pigment epithelial cells from monkey iPS cells. Invest Ophthalmol Vis Sci 2011;52(12):8785-8790 https://doi.org/10.1167/iovs.11-8129
  6. Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 2012;8(2):274-284 https://doi.org/10.1016/j.scr.2011.10.002
  7. Srijaya TC, Pradeep PJ, Zain RB, et al. The promise of human induced pluripotent stem cells in dental research. Stem Cells Int 2012;2012:423868
  8. Yan X, Qin H, Qu C, et al. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 2010;19(4):469-480 https://doi.org/10.1089/scd.2009.0314
  9. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-676 https://doi.org/10.1016/j.cell.2006.07.024
  10. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861-872 https://doi.org/10.1016/j.cell.2007.11.019
  11. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318(5858):1917-1920 https://doi.org/10.1126/science.1151526
  12. Aasen T, Raya A, Barrero MJ, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature biotechnology 2008;26(11):1276-1284 https://doi.org/10.1038/nbt.1503
  13. Kang R, Zhou Y, Tan S, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Research & Therapy 2015;6(1):144 https://doi.org/10.1186/s13287-015-0137-7
  14. Hynes K, Menichanin D, Bright R, et al. Induced Pluripotent Stem Cells: A New Frontier for Stem Cells in Dentistry. J Dent Res 2015;94(11):1508-1515 https://doi.org/10.1177/0022034515599769
  15. Yoo CH, Na HJ, Lee DS, et al. Endothelial progenitor cells from human dental pulp-derived iPS cells as a therapeutic target for ischemic vascular diseases. Biomaterials 2013;34(33):8149-8160 https://doi.org/10.1016/j.biomaterials.2013.07.001
  16. Chen J, Lin M, Foxe JJ, et al. Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts. PLoS One 2013;8(10):e75682 https://doi.org/10.1371/journal.pone.0075682
  17. Crowder SW, Leonardo V, Whittaker T, et al. Material Cues as Potent Regulators of Epigenetics and Stem Cell Function. Cell Stem Cell 2016;18(1):39-52 https://doi.org/10.1016/j.stem.2015.12.012
  18. Perez RA, Choi S-J, Han C-M, et al. Biomaterials control of pluripotent stem cell fate for regenerative therapy. Progress in Materials Science 2016;82:234-293 https://doi.org/10.1016/j.pmatsci.2016.05.003
  19. Lee J-H, Seo S-J. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells. Stem Cells International 2016;2016:7
  20. Perez RA, Kim H-W. Core-shell designed scaffolds for drug delivery and tissue engineering. Acta Biomaterialia 2015;21:2-19 https://doi.org/10.1016/j.actbio.2015.03.013
  21. Kim HW, Song JH, Kim HE. Nanofiber Generation of Gelatin?Hydroxyapatite Biomimetics for Guided Tissue Regeneration. Advanced Functional Materials 2005;15(12):1988-1994 https://doi.org/10.1002/adfm.200500116
  22. Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 1962;10:622-640
  23. Wilmut I, Schnieke AE, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Cloning Stem Cells 2007;9(1):3-7 https://doi.org/10.1089/clo.2006.0002
  24. Tada M, Takahama Y, Abe K, et al. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 2001;11(19):1553-1558 https://doi.org/10.1016/S0960-9822(01)00459-6
  25. Schneuwly S, Klemenz R, Gehring WJ. Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 1987;325(6107):816-818 https://doi.org/10.1038/325816a0
  26. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987;51(6):987-1000 https://doi.org/10.1016/0092-8674(87)90585-X
  27. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292(5819):154-156 https://doi.org/10.1038/292154a0
  28. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391):1145-1147 https://doi.org/10.1126/science.282.5391.1145
  29. Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther 2010;17(3):295-304 https://doi.org/10.1038/gt.2009.148
  30. Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008;321(5889):699-702 https://doi.org/10.1126/science.1154884
  31. Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008;322(5903):949-953 https://doi.org/10.1126/science.1164270
  32. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010;7(5):618-630 https://doi.org/10.1016/j.stem.2010.08.012
  33. Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009;4(6):472-476 https://doi.org/10.1016/j.stem.2009.05.005
  34. Fusaki N, Ban H, Nishiyama A, et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 2009;85(8):348-362 https://doi.org/10.2183/pjab.85.348
  35. Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 2011;8(6):633-638 https://doi.org/10.1016/j.stem.2011.05.001
  36. Montserrat N, Garreta E, Gonzalez F, et al. Simple generation of human induced pluripotent stem cells using poly-beta-amino esters as the non-viral gene delivery system. J Biol Chem 2011;286(14):12417-12428 https://doi.org/10.1074/jbc.M110.168013
  37. Lee CH, Kim JH, Lee HJ, et al. The generation of iPS cells using non-viral magnetic nanoparticle based transfection. Biomaterials 2011;32(28):6683-6691 https://doi.org/10.1016/j.biomaterials.2011.05.070
  38. Zhu K, Li J, Lai H, et al. Reprogramming fibroblasts to pluripotency using arginine-terminated polyamidoamine nanoparticles based non-viral gene delivery system. Int J Nanomedicine 2014;9:5837-5847
  39. Sohn YD, Somasuntharam I, Che PL, et al. Induction of pluripotency in bone marrow mononuclear cells via polyketal nanoparticlemediated delivery of mature microRNAs. Biomaterials 2013;34(17):4235-4241 https://doi.org/10.1016/j.biomaterials.2013.02.005
  40. Khan M, Narayanan K, Lu H, et al. Delivery of reprogramming factors into fibroblasts for generation of non-genetic induced pluripotent stem cells using a cationic bolaamphiphile as a non-viral vector. Biomaterials 2013;34(21):5336-5343 https://doi.org/10.1016/j.biomaterials.2013.03.072
  41. Baek S, Quan X, Kim S, et al. Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state. ACS Nano 2014;8(10):10125-10138 https://doi.org/10.1021/nn502923s
  42. Yoo J, Kim J, Baek S, et al. Cell reprogramming into the pluripotent state using graphene based substrates. Biomaterials 2014;35(29):8321-8329 https://doi.org/10.1016/j.biomaterials.2014.05.096
  43. Potdar PD, Jethmalani YD. Human dental pulp stem cells: Applications in future regenerative medicine. World Journal of Stem Cells 2015;7(5):839-851 https://doi.org/10.4252/wjsc.v7.i5.839
  44. Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 2011;9(1):17-23 https://doi.org/10.1016/j.stem.2011.06.007
  45. Nashun B, Hill PW, Hajkova P. Reprogramming of cell fate: epigenetic memory and the erasure of memories past. Embo j 2015;34(10):1296-1308 https://doi.org/10.15252/embj.201490649
  46. Chang YC, Li WC, Twu NF, et al. Induction of dental pulp-derived induced pluripotent stem cells in the absence of c-Myc for differentiation into neuron-like cells. J Chin Med Assoc 2014;77(12):618-625 https://doi.org/10.1016/j.jcma.2014.08.009
  47. I.-H. Park NA, H. Huo et al. Disease-specific induced pluripotent stem cells Cell Stem Cell 2008;134(5):877?886
  48. Raab S, Klingenstein M. A Comparative View on Human Somatic Cell Sources for iPSC Generation. 2014;2014:768391
  49. Nori S, Okada Y, Nishimura S, et al. Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Reports 2015;4(3):360-373 https://doi.org/10.1016/j.stemcr.2015.01.006
  50. X. Cao WD, R. Qu et al. Non-viral co-delivery of the four yamanaka factors for generation of human induced pluripotent stem cells via calcium phosphate nanocomposite particles. Advanced Functional Materials 2013;23(43):5403?5411 https://doi.org/10.1002/adfm.201203646
  51. Zhao Q, Gregory CA, Lee RH, et al. MSCs derived from iPSCs with a modified protocol are tumortropic but have much less potential to promote tumors than bone marrow MSCs. Proc Natl Acad Sci U S A 2015;112(2):530-535 https://doi.org/10.1073/pnas.1423008112
  52. Erickson GA, Bolin SR, Landgraf JG. Viral contamination of fetal bovine serum used for tissue culture: risks and concerns. Dev Biol Stand 1991;75:173-175
  53. Takeda-Kawaguchi T, Sugiyama K, Chikusa S, et al. Derivation of iPSCs after culture of human dental pulp cells under defined conditions. PLoS One 2014;9(12):e115392 https://doi.org/10.1371/journal.pone.0115392
  54. Gandia C, Arminan A, Garcia-Verdugo JM, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 2008;26(3):638-645 https://doi.org/10.1634/stemcells.2007-0484
  55. Mannello F, Tonti GA. Concise Review: No Breakthroughs for Human Mesenchymal and Embryonic Stem Cell Culture: Conditioned Medium, Feeder Layer, or Feeder?Free; Medium with Fetal Calf Serum, Human Serum, or Enriched Plasma; Serum?Free, Serum Replacement Nonconditioned Medium, or Ad Hoc Formula? All That Glitters Is Not Gold! Stem cells 2007;25(7):1603-1609
  56. Tamaoki N, Takahashi K, Tanaka T, et al. Dental pulp cells for induced pluripotent stem cell banking. Journal of dental research 2010;89(8):773-778 https://doi.org/10.1177/0022034510366846
  57. Szabo E, Rampalli S, Risueno RM, et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 2010;468(7323):521-526 https://doi.org/10.1038/nature09591
  58. Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 2011;475(7356):390-393 https://doi.org/10.1038/nature10263
  59. Nosrat IV, Widenfalk J, Olson L, Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 2001;238(1):120-132 https://doi.org/10.1006/dbio.2001.0400
  60. Graziano A, d'Aquino R, Laino G, Papaccio G. Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 2008;4(1):21-26 https://doi.org/10.1007/s12015-008-9013-5
  61. Ballester-Beltran J, Cantini M, Lebourg M, et al. Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation. Journal of Materials Science: Materials in Medicine 2012;23(1):195-204 https://doi.org/10.1007/s10856-011-4532-z
  62. Yoo J, Noh M, Kim H, et al. Nanogrooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials 2015;45:36-45 https://doi.org/10.1016/j.biomaterials.2014.12.049
  63. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003;55(3):329-347 https://doi.org/10.1016/S0169-409X(02)00228-4
  64. Gilbert PM, Havenstrite KL, Magnusson KE, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 2010;329(5995):1078-1081 https://doi.org/10.1126/science.1191035