DOI QR코드

DOI QR Code

Effects of Photobiomodulation on Stem Cells Important for Regenerative Medicine

  • Chang, So-Young (Beckman Laser Institute Korea, Dankook University) ;
  • Carpena, Nathaniel T. (Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University) ;
  • Kang, Bong Jin (Department of Anesthesia and Pain medicine, College of Medicine, Dankook University) ;
  • Lee, Min Young (Beckman Laser Institute Korea, Dankook University)
  • Received : 2020.08.04
  • Accepted : 2020.10.05
  • Published : 2020.12.31

Abstract

The use of stem cell therapy to treat various diseases has become a promising approach. The ability of stem cells to self-renew and differentiate can contribute significantly to the success of regenerative medical treatments. In line with these expectations, there is a great need for an efficient research methodology to differentiate stem cells into their specific targets. Photobiomodulation (PBM), formerly known as low-level laser therapy (LLLT), is a relatively non-invasive technique that has a therapeutic effect on damaged tissue or cells. Recent advances in adapting PBM to stem cell therapy showed that stem cells and progenitor cells respond favorably to light. PBM stimulates different types of stem cells to enhance their migration, proliferation, and differentiation in vitro and in vivo. This review summarizes the effects of PBM on targeted differentiation across multiple stem cell lineages. The analytical expertise gained can help better understand the current state and the latest findings in PBM and stem cell therapy.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1C1C1009695).

References

  1. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration 2013;85:3-10. https://doi.org/10.1159/000345615
  2. Chang SY, Carpena NT, Mun S, Jung JY, Chung PS, Shim H, et al. Enhanced inner-ear organoid formation from mouse embryonic stem cells by photobiomodulation. Mol Ther Methods Clin Dev 2020;17:556-67. https://doi.org/10.1016/j.omtm.2020.03.010
  3. Almeida-Junior LA, Marques NCT, Prado MTO, Oliveira TM, Sakai VT. Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED). Lasers Med Sci 2019;34:1917-24. https://doi.org/10.1007/s10103-019-02836-y
  4. Kim K, Lee J, Jang H, Park S, Na J, Myung JK, et al. Photobiomodulation enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy. Int J Mol Sci 2019;20:1131. https://doi.org/10.3390/ijms20051131
  5. de Andrade ALM, Luna GF, Brassolatti P, Leite MN, Parisi JR, de Oliveira Leal AM, et al. Photobiomodulation effect on the proliferation of adipose tissue mesenchymal stem cells. Lasers Med Sci 2019;34:677-83. https://doi.org/10.1007/s10103-018-2642-2
  6. Chen H, Wu H, Yin H, Wang J, Dong H, Chen Q, et al. Effect of photobiomodulation on neural differentiation of human umbilical cord mesenchymal stem cells. Lasers Med Sci 2019;34:667-75. https://doi.org/10.1007/s10103-018-2638-y
  7. Ferreira LS, Diniz IMA, Maranduba CMS, Miyagi SPH, Rodrigues MFSD, Moura-Netto C, et al. Short-term evaluation of photobiomodulation therapy on the proliferation and undifferentiated status of dental pulp stem cells. Lasers Med Sci 2019;34:659-66. https://doi.org/10.1007/s10103-018-2637-z
  8. Hamblin MR. Photobiomodulation or low-level laser therapy. J Biophotonics 2016;9:1122-4. https://doi.org/10.1002/jbio.201670113
  9. Facchin F, Canaider S, Tassinari R, Zannini C, Bianconi E, Taglioli V, et al. Physical energies to the rescue of damaged tissues. World J Stem Cells 2019;11:297-321. https://doi.org/10.4252/wjsc.v11.i6.297
  10. Winter R, Dungel P, Reischies FMJ, Rohringer S, Slezak P, Smolle C, et al. Photobiomodulation (PBM) promotes angiogenesis in-vitro and in chick embryo chorioallantoic membrane model. Sci Rep 2018;8:17080. https://doi.org/10.1038/s41598-018-35474-5
  11. Heinig N, Schumann U, Calzia D, Panfoli I, Ader M, Schmidt MHH, et al. Photobiomodulation mediates neuroprotection against blue light induced retinal photoreceptor degeneration. Int J Mol Sci 2020;21:2370. https://doi.org/10.3390/ijms21072370
  12. Kim HB, Baik KY, Choung PH, Chung JH. Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci Rep 2017;7:15927. https://doi.org/10.1038/s41598-017-15754-2
  13. Ebrahimpour-Malekshah R, Amini A, Zare F, Mostafavinia A, Davoody S, Deravi N, et al. Combined therapy of photobiomodulation and adipose-derived stem cells synergistically improve healing in an ischemic, infected and delayed healing wound model in rats with type 1 diabetes mellitus. BMJ Open Diabetes Res Care 2020;8:e001033. https://doi.org/10.1136/bmjdrc-2019-001033
  14. Bolukbasi Ates G, Ak A, Garipcan B, Gulsoy M. Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells. Cytotechnology 2020;72:247-58. https://doi.org/10.1007/s10616-020-00374-y
  15. Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Red (660nm) or near-infrared (810nm) photobiomodulation stimulates, while blue (415nm), green (540nm) light inhibits proliferation in human adipose-derived stem cells. Sci Rep 2017;7:7781. https://doi.org/10.1038/s41598-017-07525-w
  16. Theocharidou A, Bakopoulou A, Kontonasaki E, Papachristou E, Hadjichristou C, Bousnaki M, et al. Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside Mg-based bioceramic scaffolds under low-level laser treatment. Lasers Med Sci 2017;32:201-10. https://doi.org/10.1007/s10103-016-2102-9
  17. Fekrazad R, Asefi S, Khorsandi K, Nejatifard M. Photo biostimulatory effect of low dose photodynamic therapy on human mesenchymal stem cells. Photodiagnosis Photodyn Ther 2020;31:101886. https://doi.org/10.1016/j.pdpdt.2020.101886
  18. Mvula B, Abrahamse H. Differentiation potential of adipose-derived stem cells when cocultured with smooth muscle cells, and the role of low-intensity laser irradiation. Photomed Laser Surg 2016;34:509-15. https://doi.org/10.1089/pho.2015.3978
  19. Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep 2016;6:33719. https://doi.org/10.1038/srep33719
  20. Yin K, Zhu R, Wang S, Zhao RC. Low-level laser effect on proliferation, migration, and antiapoptosis of mesenchymal stem cells. Stem Cells Dev 2017;26:762-75. https://doi.org/10.1089/scd.2016.0332
  21. Han B, Fan J, Liu L, Tian J, Gan C, Yang Z, et al. Adipose-derived mesenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation therapy. Lasers Med Sci 2019;34:1-10. https://doi.org/10.1007/s10103-018-2567-9
  22. Park IS, Chung PS, Ahn JC, Leproux A. Human adipose-derived stem cell spheroid treated with photobiomodulation irradiation accelerates tissue regeneration in mouse model of skin flap ischemia. Lasers Med Sci 2017;32:1737-46. https://doi.org/10.1007/s10103-017-2239-1
  23. Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta Gen Subj 2017;1861:441-9. https://doi.org/10.1016/j.bbagen.2016.10.008
  24. Zare F, Moradi A, Fallahnezhad S, Ghoreishi SK, Amini A, Chien S, et al. Photobiomodulation with 630 plus 810 nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells. J Photochem Photobiol B 2019;201:111658. https://doi.org/10.1016/j.jphotobiol.2019.111658
  25. de Andrade ALM, Brassolatti P, Luna GF, Parisi JR, de Oliveira Leal AM, Frade MAC, et al. Effect of photobiomodulation associated with cell therapy in the process of cutaneous regeneration in third degree burns in rats. J Tissue Eng Regen Med 2020;14:673-83. https://doi.org/10.1002/term.3028
  26. Pedroni ACF, Diniz IMA, Abe GL, Moreira MS, Sipert CR, Marques MM. Photobiomodulation therapy and vitamin C on longevity of cell sheets of human dental pulp stem cells. J Cell Physiol 2018;233:7026-35. https://doi.org/10.1002/jcp.26626
  27. Garrido PR, Pedroni ACF, Cury DP, Moreira MS, Rosin F, Sarra G, et al. Effects of photobiomodulation therapy on the extracellular matrix of human dental pulp cell sheets. J Photochem Photobiol B 2019;194:149-57. https://doi.org/10.1016/j.jphotobiol.2019.03.017
  28. Zaccara IM, Mestieri LB, Pilar EFS, Moreira MS, Grecca FS, Martins MD, et al. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation. Lasers Med Sci 2020;35:741-9. https://doi.org/10.1007/s10103-019-02931-0
  29. Yurtsever MC, Kiremitci A, Gumusderelioglu M. Dopaminergic induction of human dental pulp stem cells by photobiomodulation: comparison of 660nm laser light and polychromatic light in the nir. J Photochem Photobiol B 2020;204:111742. https://doi.org/10.1016/j.jphotobiol.2019.111742
  30. Diniz IMA, Carreira ACO, Sipert CR, Uehara CM, Moreira MSN, Freire L, et al. Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering. J Cell Physiol 2018;233:4907-18. https://doi.org/10.1002/jcp.26309
  31. Mirhosseini M, Shiari R, Esmaeili Motlagh P, Farivar S. Cerebrospinal fluid and photobiomodulation effects on neural gene expression in dental pulp stem cells. J Lasers Med Sci 2019;10(Suppl 1):S30-6. https://doi.org/10.15171/jlms.2019.S6
  32. Pasternak-Mnich K, Ziemba B, Szwed A, Kopacz K, Synder M, Bryszewska M, et al. Effect of photobiomodulation therapy on the increase of viability and proliferation of human mesenchymal stem cells. Lasers Surg Med 2019;51:824-33. https://doi.org/10.1002/lsm.23107
  33. Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C. Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study. Int J Mol Sci 2018;19:1946. https://doi.org/10.3390/ijms19071946
  34. Amini A, Pouriran R, Abdollahifar MA, Abbaszadeh HA, Ghoreishi SK, Chien S, et al. Stereological and molecular studies on the combined effects of photobiomodulation and human bone marrow mesenchymal stem cell conditioned medium on wound healing in diabetic rats. J Photochem Photobiol B 2018;182:42-51. https://doi.org/10.1016/j.jphotobiol.2018.03.010
  35. Fridoni M, Kouhkheil R, Abdollhifar MA, Amini A, Ghatrehsamani M, Ghoreishi SK, et al. Improvement in infected wound healing in type 1 diabetic rat by the synergistic effect of photobiomodulation therapy and conditioned medium. J Cell Biochem 2019;120:9906-16. https://doi.org/10.1002/jcb.28273
  36. Feng J, Li X, Zhu S, Xie Y, Du J, Ge H, et al. Photobiomodulation with 808-nm diode laser enhances gingival wound healing by promoting migration of human gingival mesenchymal stem cells via ROS/JNK/NF-κB/MMP-1 pathway. Lasers Med Sci 2020;35:1831-9. https://doi.org/10.1007/s10103-020-03040-z
  37. McColloch A, Liebman C, Liu H, Cho M. Alterted adipogenesis of human mesenchymal stem cells by photobiomodulation using 1064nm laser light. Lasers Surg Med. In press 2020.
  38. Vale KLD, Maria DA, Picoli LC, Deana AM, Mascaro MB, Ferrari RAM, et al. The effects of photobiomodulation delivered by light-emitting diode on stem cells from human exfoliated deciduous teeth: a study on the relevance to pluripotent stem cell viability and proliferation. Photomed Laser Surg 2017;35:659-65. https://doi.org/10.1089/pho.2017.4279
  39. Yang D, Yi W, Wang E, Wang M. Effects of light-emitting diode irradiation on the osteogenesis of human umbilical cord mesenchymal stem cells in vitro. Sci Rep 2016;6:37370. https://doi.org/10.1038/srep37370
  40. Babaee A, Nematollahi-Mahani SN, Dehghani-Soltani S, Shojaei M, Ezzatabadipour M. Photobiomodulation and gametogenic potential of human Wharton's jelly-derived mesenchymal cells. Biochem Biophys Res Commun 2019;514:239-45. https://doi.org/10.1016/j.bbrc.2019.04.059
  41. Amaroli A, Agas D, Laus F, Cuteri V, Hanna R, Sabbieti MG, et al. The effects of photobiomodulation of 808 nm diode laser therapy at higher fluence on the in vitro osteogenic differentiation of bone marrow stromal cells. Front Physiol 2018;9:123. https://doi.org/10.3389/fphys.2018.00123
  42. Fekrazad R, Eslaminejad MB, Shayan AM, Kalhori KA, Abbas FM, Taghiyar L, et al. Effects of photobiomodulation and mesenchymal stem cells on articular cartilage defects in a rabbit model. Photomed Laser Surg 2016;34:543-9. https://doi.org/10.1089/pho.2015.4028
  43. Fekrazad R, Asefi S, Eslaminejad MB, Taghiyar L, Bordbar S, Hamblin MR. Correction to: Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 2019;34:127. https://doi.org/10.1007/s10103-018-2687-2
  44. Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR. Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 2019;34:115-26. https://doi.org/10.1007/s10103-018-2620-8
  45. Moradi A, Zare F, Mostafavinia A, Safaju S, Shahbazi A, Habibi M, et al. Photobiomodulation plus adipose-derived stem cells improve healing of ischemic infected wounds in type 2 diabetic rats. Sci Rep 2020;10:1206. https://doi.org/10.1038/s41598-020-58099-z
  46. de Lima RDN, Vieira SS, Antonio EL, Camillo de Carvalho PT, de Paula Vieira R, Mansano BSDM, et al. Low-level laser therapy alleviates the deleterious effect of doxorubicin on rat adipose tissue-derived mesenchymal stem cells. J Photochem Photobiol B 2019;196:111512. https://doi.org/10.1016/j.jphotobiol.2019.111512
  47. Stancker TG, Vieira SS, Serra AJ, do Nascimento Lima R, Dos Santos Feliciano R, Silva JA Jr, et al. Can photobiomodulation associated with implantation of mesenchymal adipose-derived stem cells attenuate the expression of MMPs and decrease degradation of type II collagen in an experimental model of osteoarthritis? Lasers Med Sci 2018;33:1073-84. https://doi.org/10.1007/s10103-018-2466-0
  48. Fallahnezhad S, Jajarmi V, Shahnavaz S, Amini A, Ghoreishi SK, Kazemi M, et al. Improvement in viability and mineralization of osteoporotic bone marrow mesenchymal stem cell through combined application of photobiomodulation therapy and oxytocin. Lasers Med Sci 2020;35:557-66. https://doi.org/10.1007/s10103-019-02848-8
  49. Fallahnezhad S, Amini A, Hajihossainlou B, Chien S, Dadras S, Rezaei F, et al. Combined effects of photobiomodulation and alendronate on viability of osteoporotic bone marrow-derived mesenchymal stem cells. J Photochem Photobiol B 2018;182:77-84. https://doi.org/10.1016/j.jphotobiol.2018.03.015
  50. Fallahnezhad S, Piryaei A, Darbandi H, Amini A, Ghoreishi SK, Jalalifirouzkouhi R, et al. Effect of low-level laser therapy and oxytocin on osteoporotic bone marrow-derived mesenchymal stem cells. J Cell Biochem 2018;119:983-97. https://doi.org/10.1002/jcb.26265
  51. Mostafavinia A, Dehdehi L, Ghoreishi SK, Hajihossainlou B, Bayat M. Effect of in vivo low-level laser therapy on bone marrow-derived mesenchymal stem cells in ovariectomy-induced osteoporosis of rats. J Photochem Photobiol B 2017;175:29-36. https://doi.org/10.1016/j.jphotobiol.2017.08.021
  52. Zare F, Bayat M, Aliaghaei A, Piryaei A. Photobiomodulation therapy compensate the impairments of diabetic bone marrow mesenchymal stem cells. Lasers Med Sci 2020;35:547-56. https://doi.org/10.1007/s10103-019-02844-y
  53. Khoshsirat S, Abbaszadeh HA, Khoramgah MS, Darabi S, Mansouri V, Ahmady-Roozbahany N, et al. Protective effect of photobiomodulation therapy and bone marrow stromal stem cells conditioned media on pheochromocytoma cell line 12 against oxidative stress induced by hydrogen peroxide. J Lasers Med Sci 2019;10:163-70. https://doi.org/10.15171/jlms.2019.26
  54. Peat FJ, Colbath AC, Bentsen LM, Goodrich LR, King MR. In vitro effects of high-intensity laser photobiomodulation on equine bone marrow-derived mesenchymal stem cell viability and cytokine expression. Photomed Laser Surg 2018;36:83-91. https://doi.org/10.1089/pho.2017.4344
  55. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 2013;32:41-52.
  56. Mamalis A, Siegel D, Jagdeo J. Visible red light emitting diode photobiomodulation for skin fibrosis: key molecular pathways. Curr Dermatol Rep 2016;5:121-8. https://doi.org/10.1007/s13671-016-0141-x