• Title/Summary/Keyword: Regeneration rate

Search Result 700, Processing Time 0.028 seconds

Stand Structure and Seedling Recruitment of Abies holophylla Stands in Yong-In Area, Gyeonggi (경기도 용인 지역 전나무 임분의 구조 및 천연 갱신)

  • Park, Pil-Sun;Jeon, Yoon-Goo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.153-162
    • /
    • 2010
  • Abies holophylla Maxim. is a shade tolerant species that has potential to be used for continuous cover forestry system. Stand structure and natural regeneration of A. holophylla stands in Yong-In area located in the central part of Korea was investigated to estimate the self sustainability of A. holophylla plantation. Species composition, diameter at breast height (DBH) and height distribution of trees larger than 2 cm DBH were measured in ten stands in three study sites of Jeongsu-ri, Daedae-ri, and Hodong. Species and coverage of shrub layer, and A. holophylla seedlings were also investigated. While A. holophylla in non-managed stands (Jengsuri and Daedae-ri study sites) had the importance value of 40% and showed continuous diameter and age distribution, A. holophylla in Hodong site had narrow bell-shaped DBH distribution mostly concentrating between 25-35 cm DBH classes, and single canopy structure. Abies holophylla stands in Hodong have experienced occasional thinning and selective cutting. The correlation coefficient between age-DBH was significant but low ($R^2$=0.2, P=0.03), and similar aged A. holophylla had diverse DBH values. Continuos DBH distribution and multi-canopy structure of A. holophylla stands in Jeongsu-ri site show that natural regeneration of A. holophylla has been continuously occurred in this area. Seedling density of A. holophylla was between 2000 and 33000/ha, however, the number of trees in 2-5 cm DBH class was only 40-150 trees/ha, implying that the survival rate of seedlings is not high. Continuous natural regeneration and 0.6 cm/year of diameter growth rate of A. holophylla indicate that this area could be an appropriate habitat for this species, and A. holophylla plantation in this region seem to persist suggesting the possibility of managing the stands for continuous cover forestry system as well as selective harvesting practices.

Selective Separation of Hydrogen from Gas Mixture using LaNi5 (LaNi5를 이용한 혼합기체로부터 수소의 선택적 분리)

  • Sun, Yang Kook;Nahm, Kee Suk;Lee, Wha Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.1 no.1
    • /
    • pp.15-23
    • /
    • 1989
  • The selective separation of hydrogen from gas mixture containing hydrogen was experimentally studied using $LaNi_5$. The capacity and the rate of hydrogen separation, the purity of recovered hydrogen and the optimum condition of the regeneration of deactivated $LaNi_5$ were investigated. The separation rate and the recovery ratio of hydrogen were slowly decreased with the increase of the number of hydrogen absorption cycle. It was found that this result comes from the deactivation of $LaNi_5$ partly because of the blocking of hydrocarbon compounds in the $LaNi_5$ lattice and partly because of the poisoning of $LaNi_5$ surface by carbon monoxide contained in the gas mixture. The optimum condition for the regeneration of deactivated $LaNi_5$ was obtained by heating in a vacuum to about 637 K. The recovery ratio of hydrogen at the optimum condition was observed to be about 80%. The rates of hydrogen separation were measured in the ${\alpha}$-phase and two phase regions. The rate equations could be expressed as follows ; ${\alpha}$ - phase : $$-\frac{dP{_{H_2}}}{dt}=9.836{\times}10^{-3}(P{_{H_2}}_{-P_{eq}})$$ two phase region : $$-\frac{dP_{H{_2}}}{dt}=1.6909{\times}10^2\exp(-17560/RT)(P{_{H_2}}_{-P_{eq}})$$.

  • PDF

Designing Desulfurization Reactor by Numerical Modeling including Desulfurization, Regeneration Processes, and Adsorption Rate Estimation (탈황, 재생공정 및 흡착속도 추정을 포함한 디젤용 탈황반응기 설계)

  • Choi, Chang Yong;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.874-880
    • /
    • 2017
  • In this study, we performed numerical simulation of the adsorptive desulfurization reactor for a 100 kW fuel cell. Using experimental results and the adsorption kinetics theory, the adsorption rate of sulfur in diesel was estimated and verified by numerical analysis. By analyzing the performance of desulfurization according to reactor size, the optimal reactor size was determined. By maximizing processed diesel amount, optimal diesel flow rate was determined. Regeneration process was also confirmed for the obtained optimal reactor size. The present work will be utilized to design a diesel desulfurization reactor for a fuel cell used in a ship by further process modeling and economic analysis.

In vitro plantlet regeneration of "dwarf" Indian olive (Elaeocarpus robustus Roxb.): a fruit plant of Bangladesh

  • Rahman, Md. Mahabubur;Amin, Muhammad Nurul;Ishiguri, Futoshi;Yokota, Shinso;Sultana, Rubaiyat Sharmin;Takashima, Yuya;Iizuka, Kazuya;Yoshizawa, Nobuo
    • Plant Biotechnology Reports
    • /
    • v.3 no.3
    • /
    • pp.259-266
    • /
    • 2009
  • A plantlet regeneration protocol was developed on pot-grown mature plants of Elaeocarpus robustus Roxb. cv. Dwarf from nodal and leaf explants. The best yield of adventitious shoots was achieved from the leaf-derived calli in a modified MS ($MMS_1$, half strength of major salts, full strength of minor salts, and vitamins) medium containing $4.0{\mu}M$ BA + $4.0{\mu}M$ Kn + $0.5{\mu}M$ NAA + 15% coconut water (CW). The shoot multiplication rate was amplified about twofold per culture after the addition of 15% CW to the medium. The rate of shoot multiplication reached maximum at the 5th subculture, and it maintained this rate throughout the 3 subsequent subcultures. The best rooting in vitro was investigated by subculturing the microcuttings in an $MMS_2$ (half strength of both major salts and minor salts and full strength of vitamins) medium containing $1.0{\mu}M$ IBA in the dark for one initial week at $30^{\circ}C$, followed by subculturing them in a plant-growth regulator (PGR)-free medium in the light. The plantlets raised in vitro were successfully established under ex vitro conditions.

Implant survival and risk factor analysis in regenerated bone: results from a 5-year retrospective study

  • Hong, Ji-Youn;Shin, Eun-Young;Herr, Yeek;Chung, Jong-Hyuk;Lim, Hyun-Chang;Shin, Seung-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.6
    • /
    • pp.379-391
    • /
    • 2020
  • Purpose: The aims of this study were to evaluate the 5-year cumulative survival rate (CSR) of implants placed with guided bone regeneration (GBR) compared to implants placed in native bone, and to identify factors contributing to implant failure in regenerated bone. Methods: This retrospective cohort study included 240 patients who had implant placement either with a GBR procedure (regenerated bone group) or with pristine bone (native bone group). Data on demographic features (age, sex, smoking, and medical history), location of the implant, implant-specific features, and grafting procedures and materials were collected. The 5-year CSRs in both groups were estimated using Kaplan-Meier analysis. Risk factors for implant failure were analyzed with a Cox proportional hazards model. Results: In total, 264 implants in the native bone group and 133 implants in the regenerated bone group were analyzed. The 5-year CSRs were 96.4% in the regenerated bone group and 97.5% in the native bone group, which was not a significant difference. The multivariable analysis confirmed that bone status was not an independent risk factor for implant failure. However, smoking significantly increased the failure rate (hazard ratio, 10.7; P=0.002). Conclusions: The 5-year CSR of implants placed in regenerated bone using GBR was comparable to that of implants placed in native bone. Smoking significantly increased the risk of implant failure in both groups.

CLINICAL STUDY ON SURVIVAL RATE OF OSSEOINTEGRATED IMPLANTS (골유착성 치과 임플란트의 생존율에 관한 임상적 연구)

  • Choi, Ji-Yeon;Koh, Se-Wook;Ryu, Hwun-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.306-313
    • /
    • 2009
  • Objectives: The aim of the present review was to evaluate survival rate and various factors associated with survival of osseointegrated implants. Patients and methods: The clinical comparisons were performed to evaluate survival rate of 794 endosseous implants that had been inserted between 2004 through 2008 in relation to sex and age of patients, position of implant, implant system and surface characteristics, length and diameter of implant, and bone graft technique. Results: The survival rate of implant was 94.3% in posterior area of maxilla and 98.6% in posterior area of mandible by position of implant, a statistically significant difference. As to diameter of implant, survival rate was 98.4% between the 4.0 and 4.5 mm and 75.0% in larger than 5.0 mm, that was statistically significant difference. There was a statistically significant difference regard to bone graft and surgical technique. The implant survival rate was 89.0% in a placement site which performed sinus lifting, and in case of implant placement with guided bone regeneration technique and without bone grafting was 97.6% and 100% each. Conclusion: According to these findings, this study establishes a relationship between survival rate of implant and position, surface characteristics, diameter of implant and bone graft technique.

Inductive Effects of Ginseng Saponins on the Rat LDH A-gene and the Synthetic rate of Hepatocyte DNA in Regenerating Rat Liver Cells (인삼사포닌의 흰쥐 LDH-A 유전자와 흰쥐 간세포 재생시 DNA 합성률에 미치는 유도효과)

  • 유계진;이광율;이성기
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.200-206
    • /
    • 1990
  • The effects of ginseng saponins, SRbl and G-Rc on the rat liver LDH A-gene transcriptional activity was investigated during prereplicative phase of rat liver after partial hepatectomy. Changes in LDH A-mRNA levels in regenerating rat liver after intraperitoneal administrations of G-Rbl or 'G-Rc were tested by slot blot hybridization methods. The results showed that G-Rbl (1 mg/100g B.W) and G-Rc (1 mg/100g B.W) caused marked increases of LDH A-mRNA contents by respectively 1.9- and 1.5-fold in rat liver at 5-hours after partial hepatectomy Dose dependent elect of G-Rbl and G-Rc (1-25 mg/ 100g B.W) on the LDH A-mRNA levels on regenerating rat liver were also analyzed. The maximal increases of liver LDH A-mRNA levels were observed with the doses of 1 mg for G-Rbl and 5 mg for G-Rc. However, when the administration doses of G-Rbl and G-Rc were increased to 20 mg, G-Rbl caused a marked decrease of LDH A-mRNA level to 61% of those in sham-operated rat liver. In contrast, G-Rc slightly decreased the liver LDH A-mRNA contents by 30% as compared to those of the maximum value but still maintained 22% higher LDH A-mRNA levels then those of sham-operated rate liver. On the basis of these experimental results, we conclude that ginseng saponin, G-Rbl and G-Rc have stimulatory effect at the lower concentration (1 mg/ 100g B.W) and inhibitory effect at the higher concentration (20 mg/ 100g B.W) on the LDH A-gene transcription during regeneration of rat liver. Additionally we also investigated the stimulatory effects of ginsenosides on the protein and DNA sinthetic activities in hepatocyte primary cell cultures isolated from regenerating rat liver. Both of G-Rc and -Re increased the synthetic rates of hepatocytes proteins and DNA at the administration doses of 50 us and 100 $\mu\textrm{g}$/3 ml/dish respectively representing 1.3-1.6 fold increases. From these results we postulate that G-Rc and -Re may have a mitogen ehincer activity for the hepatocyte proliferation during rat liver regeneration period.

  • PDF

Optimization Strategies for Amine Regeneration Process with Heat-Stable Salt Removal Unit (열 안정성 염 제거장치를 고려한 아민 재생 공정 최적화 전략)

  • Lee, Jesung;Lim, Jonghun;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.575-580
    • /
    • 2020
  • In this study, we simulated an amine regeneration process with heat-stable salts removal unit. We derived the optimal operating conditions considering the flow rate of waste, the removal rate of heat-stable salts, and the loss rate of MDEA (methyl diethanolamine). In the amine regeneration process that absorbs and removes acid gas, heat-stable salt impairs the absorption efficiency of process equipment and amine solution. An ion exchange resin method is to remove heat-stable salts through neutralization by using a strong base solution such as NaOH. The acid gas removal process was established using the Radfrac model, and the equilibrium constant of the reaction was calculated using Gibbs free energy. The removed amine solution is separated and flows to the heat-stable salts remover which is modeled by using the Rstoic model with neutralization reaction. Actual operation data and simulation results were compared and verified, and also a case study was conducted by adjusting the inflow mass of removal unit followed by suggesting optimal conditions.

In vitro Regeneration and Genetic Stability Analysis of the Regenerated Green Plants in Japanese Blood Grass (Imperata cylindrica 'Rubra') (홍띠 기내 재생과 재생 녹색식물체의 유전적 안정성)

  • Kang, In-Jin;Lee, Ye-Jin;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.34 no.2
    • /
    • pp.156-165
    • /
    • 2021
  • The in vitro regeneration was established, and the genetic stability among the mother plants (control) and the micropropagated green plants was evaluated using ISSR markers in Imperata cylindrica 'Rubra', Poaceae which containing important bioenergy plants. Green shoots were multiply induced from growing point culture via callus on MS medium supplemented with 0.01 mg/L NAA and 2 mg/L BA, and the shoots were proliferated on the MS medium with rooting. Rooted plantlets were transplanted to the pot with 100% survival rate. Using ISSR markers, somaclonal variation was analyzed in eight mother plants (control), ten green-regenerant cultivated at culture room (ReR) and ten green-regenerant cultivated at field condition (ReF). All ISSRs produced a total of 97 bands, and the scorable bands varied from one to seven with an average of 4.4 bands per primer. The polymorphism rate of ReRs and ReFs was 4.1% and 3.1% respectively, showing higher rate than that of control (0%). The genetic similarity matrix (GSM) among all accessions ranged from 0.919 to 1.0 with a mean of 0.972. According to the clustering analysis, ReFs and mother plants were divided into two independent groups. The results indicate that no clear genetic diversity was detected among regenerated plants, and ISSR markers were useful tool for identification of somaclonal variation of regenerants.

Efficient plant regeneration through callus induction from the hypocotyl of Perilla frutescens L var. Dayu ('다유들깨'품종의 하배축에서 캘러스를 통한 고효율 식물재분화)

  • Ruyue Xu;Ji-Hi Son;Hong-Gyu Kang;Hyeon-Jin Sun;Hyo-Yeon Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.248-254
    • /
    • 2023
  • This study was conducted to establish an efficient plant regeneration system in 'Dayu', a Korean variety of Perilla frutescens developed for seed oil production, in conjunction with the previously studied variety 'Namcheon'. The healthiest callus was formed on the hypocotyl explants cultured on a medium containing 0.1 mg/L NAA and 0.5 mg/L BA, outperforming the leaf and cotyledon samples. In both dark and long-day conditions, Dayu consistently exhibited significantly higher shoot regeneration rates compared with Namcheon. The highest shoot regeneration rates in Dayu were observed from the hypocotyl explants cultured on 0.1 mg/L NAA and 0.5 mg/L BA media, with shoot regeneration rates of 84.4% and 86.7% under dark and long-day conditions, respectively. Various combinations of plant growth regulators were tested to establish the optimal shoot regeneration conditions for Dayu hypocotyl explants. The results demonstrated that the highest shoot regeneration rate (90%) was achieved when 0.5 mg/L of BA was added to the medium without NAA. Among the regenerated shoots, 70.5% were normal plants, while 19.3% were abnormal. The addition of NAA or an increase in its concentration led to a higher occurrence of abnormal plants. After the regenerated shoots were transferred to 1/2 MS medium, roots were observed within 10-15 days. By day 30, they had developed into complete plants. The results obtained from the regeneration experiments with the perilla variety Dayu can valuably inform molecular breeding reliant on transformation techniques such as genome-editing and genetic modification technology.