• Title/Summary/Keyword: Reflow Process

Search Result 174, Processing Time 0.033 seconds

Study on Joining Strength Improvement of Solder Joint with Pb Free Solder (Pb Free 솔더를 사용한 솔더 접합부의 접합 강도 향상에 관한 연구)

  • 신영의;김영탁
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.36-42
    • /
    • 1997
  • In this paper, stability of initial strength at solder joint with lead free solders, such as Sn-In (52-48%) and Sn-Ag (96.5-3.5wt%) was studied. To obtain at solder joint with high quality, it is very important to control the temperature at the interface of solder joints. It is found that the thermal EMF (electro motive force) occurs betwee lead frame and copper pad on a substrate during reflow soldering process using heated tip. As a result of control the temperature at interface of solder joints, variation of initial strength at solder joint decreases from about $\pm40%$ to $\pm20%$, and it is realized Pb free soldering process using Sn/In and Sn-Ag solder paste.

  • PDF

Fracture Analysis of Electronic IC Package in Reflow Soldering Process

  • Yang, Ji-Hyuck;Lee, Kang-Yong;Lee, Taek sung;Zhao, She-Xu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.357-369
    • /
    • 2004
  • The purposes of the paper are to analyze the fracture phenomenon by delamination and cracking when the encapsulant of plastic IC package with polyimide coating shows viscoelastic behavior under hygrothermal loading in the IR soldering process and to suggest more reliable design conditions by the approaches of stress analysis and fracture mechanics. The model is the plastic SOJ package with the polyimide coating surrounding chip and dimpled diepad. On the package without cracks, the optimum position and thickness of polyimide coating to decrease the maximum differences of strains at the bonding surfaces of parts of the package are studied. For the model delaminated fully between the chip and the dimpled diepad, C(t)-integral values are calculated for the various design variables. Finally, the optimal values of design variables to depress the delamination and crack growth in the plastic IC package are obtained.

Fabrication of Mold-insert for Micro-lens Using Electroforming Process (Electroforming 공정을 이용한 마이크로 렌즈용 몰드 인서트의 제작)

  • 이남석;문수동;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.94-97
    • /
    • 2002
  • Micromolding methods are most suitable for mass production of plastic microlens and lens array with low cost. Among the procedures related with micromolding of microlens array, fabrication of mold insect which contains micro cavity of lens shape is the most important stage. In this study, nickel mold inserts for 45 $\mu\textrm{m}$ and 95 $\mu\textrm{m}$ diameters lens way were fabricated using electroforming process. The mother for metal mold inset was made using reflow method. A micro compression molding with polymer powders was used to test the qualities of the metal mold insets. Micro lens profile and surface roughness was measured by interferometric technique and AFM, respectively. The final molded lens replicated the mother well, and had good surface quality.

  • PDF

Non-PR direct bumping for 3D wafer stacking (3차원 실장을 위한 Non-PR 직접범핑법)

  • Jeon, Ji-Heon;Hong, Seong-Jun;Lee, Gi-Ju;Lee, Hui-Yeol;Jeong, Jae-Pil
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.229-231
    • /
    • 2007
  • Recently, 3D-electronic packaging by TSV is in interest. TSV(Through Silicon Via) is a interconnection hole on Si-wafer filled with conducting metal such as Copper. In this research, chips with TSV are connected by electroplated Sn bump without PR. Then chips with TSV are put together and stacked by the methode of Reflow soldering. The stacking was successfully done and had no noticeable defects. By eliminating PR process, entire process can be reduced and makes it easier to apply on commercial production.

  • PDF

A study on the brittle characteristics of fused silica header driven by piezoelectric actuator for laser assisted TC bonding (레이저 열-압착 본딩을 위한 압전 액추에이터로 구동되는 용융실리카 헤더의 취성특성에 관한 연구)

  • Lee, Dong-Won;Ha, Seok-Jae;Park, Jeong-Yeon;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.10-16
    • /
    • 2019
  • Semiconductor chip is bonded to the substrate by melting solder bumps. In general, the chip bonding is applied by a Reflow process or a Thermo-Compression(TC) bonding process. In this paper, we introduce a Laser Assisted Thermo-Compression bonding (LATCB) process to improve the anxiety of the existing process(Reflow, TC bonding). In the LATCB process, the chip is bonded to the substrate by irradiating a laser with a uniform energy density in the same area as the chip to melt only the solder bumps and press the chip with a Transparent Compression Module (TCM). The TCM consists of a fused silica header for penetrating the laser and pressurizing the chip, and a piezoelectric actuator (P.A.) coupled to both ends of the header for micro displacement control of the header. In addition, TCM is a structure that can pressurize the chip and deliver it to the chip and solder bumps without losing the energy of the laser. Fused silica, which is brittle, is vulnerable to deformation, so the header may be damaged when an external force is applied for pressurization or a displacement differenced is caused by piezoelectric actuators at both ends. On the other hand, in order to avoid interference between the header and the adjacent chip when pressing the chip using the TCM, the header has a notch at the bottom, and breakage due to stress concentration of the notch is expected. In this study, the thickness and notch length that the header does not break when the external force (500 N) is applied to both ends of the header are optimized using structural analysis and Coulomb-Mohr failure theory. In addition, the maximum displacement difference of the P.A.s at both ends where no break occurred in the header was derived. As a result, the thickness of the header is 11 mm, and the maximum displacement difference between both ends is 8 um.

Magnetic Induction Soldering Process for Mounting Electronic Components on Low Heat Resistance Substrate Materials (저 내열 기판소재 전자부품 실장을 위한 자기유도 솔더링)

  • Youngdo Kim;Jungsik Choi;Min-Su Kim;Dongjin Kim;Yong-Ho Ko;Myung-Jin Chung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • Due to the miniaturization and multifunctionality of electronic devices, a surface mount technology in the form of molded interconnect devices (MID), which directly forms electrodes and circuits on the plastic injection parts and mounts components and parts on them, is being introduced to overcome the limitations in the mounting area of electronic components. However, when using plastic injection parts with low thermal stability, there are difficulties in mounting components through the conventional reflow process. In this study, we developed a process that utilizes induction heating, which can selectively heat specific areas or materials, to melt solder and mount components without causing any thermal damage to the plastic. We designed the shape of an induction heating Cu coil that can concentrate the magnetic flux on the area to be heated, and verified the concentration of the magnetic flux and the degree of heating on the pad part through finite element method (FEM). LEDs, capacitors, resistors, and connectors were mounted on a polycarbonate substrate using induction heating to verify the mounting process, and their functionality was confirmed. We presented the applicability of a selective heating process through magnetic induction that can overcome the limitations of the reflow method.

DEVELOPMENT OF SN BASED MULTI COMPONENT SOLDER BALLS WITH CD CORE FOR BGA PACKAGE

  • Sakatani, Shigeaki;Kohara, Yasuhiro;Uenishi, Keisuke;Kobayashi, Kojiro F.;Yamamoto, Masaharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.450-455
    • /
    • 2002
  • Cu-cored Sn-Ag solder balls were fabricated by coating pure Sn and Ag on Cu balls. The melting behavior and the solderability of the BGA joint with the Ni/Au coated Cu pad were investigated and were compared with those of the commercial Sn-Ag and Sn-Ag-Cu balls. DSC analyses clarified the melting of Cu-cored solders to start at a rather low temperature, the eutectic temperature of Sn-Ag-Cu. It was ascribed to the diffusion of Cu and Ag into Sn plating during the heating process. After reflow soldering the microstructures of the solder and of the interfacial layer between the solder and the Cu pad were analyzed with SEM and EPMA. By EDX analysis, formation of a eutectic microstructure composing of $\beta$-Sn, Ag$_3$Sn, ad Cu$_{6}$Sn$_{5}$ phases was confirmed in the solder, and the η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer was found to form at the interface between the solder and the Cu pad. By conducting shear tests, it was found that the BGA joint using Cu-cored solder ball could prevent the degradation of joint strength during aging at 423K because of the slower growth me of η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer formed at the solder, pad interface. Furthermore, Cu-cored multi-component Sn-Ag-Bi balls were fabricated by sequentially coating the binary Sn-Ag and Sn-Bi solders on Cu balls. The reflow property of these solder balls was investigated. Melting of these solder balls was clarified to start at the almost same temperature as that of Sn-2Ag-0.75Cu-3Bi solder. A microstructure composing of (Sn), Ag$_3$Sn, Bi and Cu$_{6}$Sn$_{5}$ phases was found to form in the solder ball, and a reaction layer containing primarily η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ was found at the interface with Ni/Au coated Cu pad after reflow soldering. By conducting shear test, it was found that the BGA joints using this Cu-core solder balls hardly degraded their joint shear strength during aging at 423K due to the slower growth rate of the η'-(Au, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer at the solder/pad interface.he solder/pad interface.

  • PDF

A Study on Operation Control Technology Required for Introduction of Intelligent Sewage Treatment Plant (스마트 하수처리장 도입에 필요한 운전제어기술에 관한 연구)

  • Lee, Jiwon;Kim, Yuhyeon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • Smart sewage treatment plant means creating a safe and clean water environment by establishing an ICT-based real-time monitoring, remote control management and intelligent system for the entire sewage treatment process. The core technology of such a smart sewage treatment plant can be operation control technology using measuring instruments. This research team analyzed and suggested the operation control technologies necessary for the establishment of the intelligent business by referring to the intelligent research projects of the sewage treatment plant in progress in Korea. As a result of the analysis, a total of six removal technologies were presented, including control by scale, reflow water control, linked treated water control, chemical quantity control, winter operation control, and total organic carbon control. By size, standards that can be classified into small and medium-sized large-scale are presented, and in the case of reflow water control, the location of water quality and flow sensors capable of managing reflow water is suggested. In the case of the linked treated water control, the influence and control points of the linked treated water on the sewage treatment plant were presented, and in the case of the chemical injection volume control, a system capable of optimizing the amount of chemical injection according to the introduction of an intelligent sewage treatment plant was presented. In the case of winter operation, the sensors and pumps to be controlled are suggested when considering the decrease in nitrification due to the decrease in water temperature. In the case of total organic carbon control, an interlocking system considering the total amount of pollution in the future was proposed. These operation control scenarios are expected to be used as basic data to be used in intelligent sewage treatment algorithms and scenarios in the future.

Fabrication Method of High-density and High-uniformity Solder Bump without Copper Cross-contamination in Si-LSI Laboratory (실리콘 실험실에 구리 오염을 방지 할 수 있는 고밀도/고균일의 Solder Bump 형성방법)

  • 김성진;주철원;박성수;백규하;이희태;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.23-29
    • /
    • 2000
  • We demonstrate the fabrication method of high-density and high-quality solder bump solving a copper (Cu) cross-contamination in Si-LSI laboratory. The Cu cross-contamination is solved by separating solder-bump process by two steps. Former is via-formation process excluding Cu/Ti under ball metallurgy (UBM) layer sputtering in Si-LSI laboratory. Latter is electroplating process including Ti-adhesion and Cu-seed layers sputtering out of Si-LSI laboratory. Thick photoresist (PR) is achieved by a multiple coating method. After TiW/Al-electrode sputtering for electroplating and via formation in Si-LSI laboratory, Cu/Ti UBM layer is sputtered on sample. The Cu-seed layer on the PR is etched during Cu-electroplating with low-electroplating rate due to a difference in resistance of UBM layer between via bottom and PR. Therefore Cu-buffer layer can be electroplated selectively at the via bottom. After etching the Ti-adhesion layer on the PR, Sn/Pb solder layer with a composition of 60/40 is electroplated using a tin-lead electroplating bath with a metal stoichiometry of 60/40 (weight percent ratio). Scanning electron microscope image shows that the fabricated solder bump is high-uniformity and high-quality as well as symmetric mushroom shape. The solder bumps with even 40/60 $\mu\textrm{m}$ in diameter/pitch do not touch during electroplating and reflow procedures. The solder-bump process of high-uniformity and high-density with the Cu cross-contamination free in Si-LSI laboratory will be effective for electronic microwave application.

  • PDF

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF