The article shows that the concept 'weight' and the concept 'heaviness' give rise to different abstractions in the sense of Piaget and that these two concepts are differentiated by set-theoretic devices. The failure of differentiation of these two concepts 'weight' and the 'heaviness' can cause the failure of learning of the difference between reflective abstraction and empirical reflective abstraction. To explain the Piagetian abstrcation in a classroom, the author suggests to use the concept 'color' instead of the concept 'weigtht'.
This study began with an epistemological question about the nature of mathematical cognition in relation to the learner's activity. Therefore, by examining Piaget's 'reflective abstraction' theory which can be an answer to the question, we tried to get suggestions which can be given to the mathematical education in practice. 'Reflective abstraction' is formed through the coordination of the epistmmic subject's action while 'empirical abstraction' is formed by the characters of observable concrete object. The reason Piaget distinguished these two kinds of abstraction is that the foundation for the peculiar objectivity and inevitability can be taken from the coordination of the action which is shared by all the epistemic subjects. Moreover, because the mechanism of reflective abstraction, unlike empirical abstraction, does not construct a new operation by simply changing the result of the previous construction, but is forming re-construction which includes the structure previously constructed as a special case, the system which is developed by this mechanism is able to have reasonability constantly. The mechanism of the re-construction of the intellectual system through the reflective abstraction can be explained as continuous spiral alternance between the two complementary processes, 'reflechissement' and 'reflexion'; reflechissement is that the action moves to the higher level through the process of 'int riorisation' and 'thematisation'; reflexion is a process of 'equilibration'between the assimilation and the accomodation of the unbalance caused by the movement of the level. The operational learning principle of the theorists like Aebli who intended to embody Piaget's operational constructivism, attempts to explain the construction of the operation through 'internalization' of the action, but does not sufficiently emphasize the integration of the structure through the 'coordination' of the action and the ensuing discontinuous evolvement of learning level. Thus, based on the examination on the essential characteristic of the reflective abstraction and the mechanism, this study presents the principles of teaching and learning as following; $\circled1$ the principle of the operational interpretation of knowledge, $\circled2$ the principle of the structural interpretation of the operation, $\circled3$ the principle of int riorisation, $\circled4$ the principle of th matisation, $\circled5$ the principle of coordination, reflexion, and integration, $\circled6$ the principle of the discontinuous evolvement of learning level.
This study sought to provide an explanation of university students' concept understanding on the infinity and infinite process and utilized a psychological constructivist perspective to examine the differences in transitions that students make from static concept of limit to actualized infinity stage in context of problems. Open-ended questions were used to gather data that were used to develop an explanation concerning student understanding. 47 university students answered individually and were asked to solve 16 tasks developed by Petty(1996). Microgenetic method with two cases from the expert-novice perspective were used to develop and substantiate an explanation regarding students' transitions from static concept of limit to actualized infinity stage. The protocols were analyzed to document student conceptions. Cifarelli(1988)'s levels of reflective abstraction and Robert(1982) and Sierpinska(1985)'s three-stage concept development model of infinity and infinite process provided a framework for this explanation. Students who completed a transition to actualized infinity operated higher levels of reflective abstraction than students who was unable to complete such a transition. Developing this ability was found to be critical in achieving about understanding the concept of infinity and infinite process.
In this study, we have investigated the meaning and mechanism of the 'construction' in the operational constructivism and the social constructivism. According to Piaget, a mathematical concept is the operational sch me, which is constructed through the reflective abstraction from a general coordination of activities and operations. The process of the reflective abstraction consists of 'reflechissement'and 'reflexion'. The reflechissement starting from 'intriorisation' concludes with 'thematisation', and the reflexion consists in the 'equilibration' of the result of reflechissement. The 'construction' in the social constructivism includes two process. One is the process from the individual, subjective knowledge of mathematics to the social, objective knowledge of mathematics, and the other is vice versa. The emphases is placed on the 'social interaction' and the 'representation' in this two processes. In this context, if we want to apply the social constructivism, we should clarify the meaning of 'society', and consider the difference between the society of mathematicians and the society of students.
Computer has been regarded as an alternative that could overcome the difficulties in the teaching and learning of mathematics. But the didactical problems of the computer-based environment for mathematics education could give us new obstacles. In this paper, first of all, we examined the application of the learning theories of mathematics to the computer environment. If the feedbacks of the computer are too immediate, students would have less opportunity to reflect on their thinking and focus their attention on the visual aspects, which leads to the simple abstraction rather than the reflective abstraction. We also examined some other Problems related to cognitive obstacle to learn the concepts of geometric figure and the geometric knowledge. Based on the analysis on the problems related to the computer-based environment of mathematics teaching and learning, we tried to find out the direction to use computer more adequately in teaching and learning geometry.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.10B
/
pp.1675-1689
/
2000
We present CReMeS a CORBA-compliant design and implementation of a new real-time communication service. It provides for efficient predictable and scalable communication between information producers and consumers. The CReMeS architecture is based on MidART's Real-Time Channel-based Reflective Memory (RT-CRM) abstraction. This architecture supports the separation of QoS specification between producer and consumer of data and employs a user-level scheduling scheme for communicating real-time tasks. These help us achieve end-to-end predictability and allows our service to scale. The CReMeS architecture provides a CORBA interface to applications and demands no changes to the ORB layer and the language mapping layer. Thus it can run on non real-time Off-The-Shelf ORBs enables applications on these ORBs to have scalable and end-to-end predictable asynchronous communication facility. In addition an application designer can select whether to use an out-of-band channel or the ORB GIOP/IIOP for data communication. This permits a trade-off between performance predictability and reliability. Experimental results demonstrate that our architecture can achieve better performance and predictability than a real-time implementation of the CORBA Even Service when the out-of-band channel is employed for data communication it delivers better predictability with comparable performance when the ORB GIOP/IIOP is used.
The researchers developed the teaching-learning materials for 9th grade mathematically gifted students in terms of the hypothesis that the students would have opportunity for problem solving and develop various mathematical thinking through the mathematical modeling lessons. The researchers analyzed what mathematical thinking abilities were shown on each stage of modeling process through the application of the materials. Organization of information ability appears in the real-world exploratory stage. Intuition insight ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the pre-mathematical model development stage. Mathematical abstraction ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the mathematical model development stage. Generalization and application ability and reflective thinking ability appears in the model application stage. The developed modeling assignments have provided the opportunities for mathematically-gifted students' mathematical thinking ability to develop and expand.
This study is on the theory of Piaget's reflective abstraction and the mechanism of the development of knowledge and the history of algebra and its application to understand the difficulties that many students have in learning algebra. Piaget considers the development of knowledge as a linear process. The stages in the construction of different forms of knowledge are sequential and each stage begins with reorganization. The reorganization consists of the projection onto a higher level from the lower level and the reflection which reconstructs and reorganizes within a lager system that is transferred by profection. Piaget shows that the mechanisms mediating transitions from one historical period to the next are analogous to those mediating the transition from one psychogenetic stage to the next and characterizes the mechanism as the intra, inter, trans sequence. The historical development of algebra is characterized by three periods, which are intra inter, transoperational. The analysis of the history of algebra by the mechanism explains why the difficulties that students have in learning algebra occur and shows that the roles of teachers are important to help students to overcome the difficulties.
In this paper we emphasize the introduction of ‘incommensurability’ on the teaching and learning the irrational number because we think of the origin of number as ‘ratio’. According to Greek classification of continuity as a ‘never ending’ divisibility, discrete number and continuous magnitude belong to another classes. That is, those components were dealt with respectively in category of arithmetic and that of geometry. But the comparison between magnitudes in terms of their ratios took the opportunity to relate ratios of magnitudes with numerical ratios. And at last Stevin coped with discrete and continuous quantity at the same time, using his instrumental decimal notation. We pay attention to the fact that Stevin constructed his number conception in reflecting the practice of measurement : He substituted ‘subdivision of units’ for ‘divisibility of quantities’. Number was the result of such a reflective abstraction. In other words, number was invented by regulation of measurement. Therefore, we suggest decimal representation from the point of measurement, considering the foregoing historical development of number. From the perspective that the conception of real number originated from measurement of ‘continuum’ and infinite decimals played a significant role in the ‘representation’ of measurement, decimal expression of real number should be introduced through contexts of measurement instead of being introduced as a result of algorithm.
The purpose of this research was to confirm one of constructivists' assumptions that even children 조o are with low reasoning ability can make reflective abstracting ability and cognitive structures by this ability can make generation ability of new knowledge by themselves. To investigate the assumption, learner-centered instruction were implemented to 2nd grade classroom located in Suseong Gu, DaeGu City and with lesson plans which initially were developed by Burns and corrected by the researchers. Recordings videoed using 2 video cameras, observations, instructions, children's activity worksheets, instruction journals were analyzed using multiple tests for qualitative analysis. Some conclusions are drawn from the results. First, even children with low reasoning ability can construct mathematical knowledge on multiplication in their own. ways, Thus, teachers should not compel them to learn a learning lesson's goals which is demanded in traditional instruction, with having belief they have reasoning ability. Second, teachers need to have the perspectives of respects out of each child in their classroom and provide some materials which can provoke children's cognitive conflict and promote thinking with the recognition of effectiveness of learner-centered instruction. Third, students try to develop their ability of reflective and therefore establish cognitive structures such as webs, not isolated and fragmental ones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.