• Title/Summary/Keyword: Reflection amplitude

Search Result 168, Processing Time 0.022 seconds

Reflection-amplitude Approximation for the Interlayer Exchange Coupling in (001) Co/Cu/Co Multilayers

  • Lee, B. C.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.191-199
    • /
    • 2000
  • The reflection-amplitude approximation is used to calculate the interlayer exchange coupling in (001) Co/Cu/Co multilayers. The dependence of the phase factor of the reflection amplitude on the energy and wave vector is included. The contribution of each period is calculated and the results are compared with those from the asymptotic behavior. It is shown that the energy and wave-vector dependence of the phase factor may affect the interlayer exchange coupling significantly.

  • PDF

Effect of the Phase Factor of the Reflection Amplitude on the Interlayer Exchange Coupling in (001) Co/Cu/Co Multilayers

  • Lee, B.C.
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.43-46
    • /
    • 2001
  • The reflection-amplitude approximation is used to calculate the interlayer exchange coupling in (001) Co/Cu/Co multilayers. The dependence of the phase factor of the reflection amplitude on the energy and wave vector is included. The contribution of each period is calculated and the results are compared with those from asymptotic behavior. It is shown that the energy and wave-vector dependence of the phase factor may affect the interlayer exchange coupling significantly.

  • PDF

Effects of stiffness on reflection and transmission of micropolar thermoelastic waves at the interface between an elastic and micropolar generalized thermoelastic solid

  • Kumar, Rajneesh;Sharma, Nidhi;Ram, Paras
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.117-135
    • /
    • 2009
  • The reflection and transmission of micropolar thermoelastic plane waves at the interface between an elastic solid and micropolar generalized thermoelastic solid is discussed. The interface boundary conditions obtained contain interface stiffness (normal stiffness and transverse stiffness). The expressions for the reflection and transmission coefficients which are the ratios of the amplitudes of reflected and transmitted waves to the amplitude of incident waves are obtained for normal force stiffness, transverse force stiffness and welded contact. Numerical calculations have been performed for amplitude ratios of various reflected and transmitted waves. The variations of amplitude ratios with angle of incident wave have been depicted graphically. It is found that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, micropolarity and thermal distribution of the media.

Mapping of the lost riprap in shallow marine sediments using SBP (SBP를 이용한 해저 천부에 유실된 사석의 조사)

  • Shin, Sung-Ryul;Kim, Chan-Su;Yeo, Eun-Min;Kim, Young-Jun;Ha, Hee-Sang
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.220-221
    • /
    • 2005
  • Sub-bottom profiler(SBP) has been used extensively for the mapping of basement in the foundation design of offshore structure, for pre- and post-dredging operations within harbors and channels, for selection of pipeline routes, sitting of drilling platforms, and in the exploration for an aggregates such as sands and gravels. During the construction of Siwha embankment for irrigation water and the expansion of arable land, the breaking of an embankment unfortunately occurred so that a lot of riprap was swept away and widely dispersed by the tide and strong current. The feasibility study for the construction of the tidal-powered electric plant in Siwha embankment was performed quite recently. Therefore we made use of SBP survey to investigate the distribution of the lost riprap. We could successfully map out the distribution of the lost riprap from the reflection amplitude characteristics of the sediments in SBP data set. We demonstrated the variation of reflection amplitude versus the sediments with and/or without riprap by means of the numerical modeling of acoustic wave equation using finite difference method. Also we examined an amplitude anomaly of the ripraped area through the physical modeling using ultrasonic.

  • PDF

Reflection of a gaussian beam from a planar dielectric interface

  • Lee, Yeon H.
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.200-206
    • /
    • 1996
  • When a Gaussian beam is incident to a planar dielectric interface at an angle other than Brewster angle or the critical angle of total reflection, we derive the six nonspecular effects of rotation, lateral shift, focal shift, Rayleigh length change, magnitude and phase changes in the complex amplitude of the reflected beam simultaneously by taking account of the boundary condition. In the derivation we assume a Gaussian beam of fundamental mode to emerge from the interface and then match at the interface the constant, linear, and quadratic variations of the amplitude and phase of the reflected beam with those of the incident beam multiplied by the reflection coefficient. Our calculation shows that the six nonspecular effects can result from a linear variation of the natural logarithm of the reflection coefficient at the interface.

  • PDF

Effect of fractional order on energy ratios at the boundary surface of elastic-piezothermoelastic media

  • Kumar, Rajneesh;Sharma, Poonam
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.157-174
    • /
    • 2017
  • In the present investigation reflection and transmission of plane waves at an elastic half space and piezothermoelastic solid half space with fractional order derivative is discussed. The piezothermoelastic solid half space is assumed to have 6 mm type symmetry and assumed to be loaded with an elastic half space. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the piezothermoelastic properties of media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios are computed numerically using amplitude ratios for a particular model of graphite and Cadmium Selenide (CdSe). The variations of energy ratios with angle of incidence are shown graphically. The conservation of energy across the interface is verified. Some cases of interest are also deduced from the present investigation.

Analysis of Brags Reflection of Cnoidal Waves with Boussinesq Equations (Boussinesq방정식을 이용한 크노이드파의 Brags반사 해석)

  • 조용식;정재상;이종인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.274-281
    • /
    • 2002
  • Numerical analysis for the Bragg reflection due to a sinusoidally and a doubly-sinusoidally varying seabeds was performed by using a couple of ordinary differential equations derived from the Boussinesq equations. Incident waves are a train of cnoidal waves. The effects of the dispersion and shape of seabed were investigated. It is shown that the reflection of a sinusoidally varying seabed is enhanced by increasing the dispersion and the amplitude of a seabed. The reflection of waves over a doubly-sinusoidally varying seabed can also be enhanced by increasing the amplitude of seabed decreasing the difference of wave numbers of seabed components.

Complex Analyses for Gas Hydrate Seismic Reflection Data (가스하이드레이트 탄성파 자료의 복소분석)

  • Hien, D.H.;Jang, Seong-Hyung;Kim, Young-Wan;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.208-212
    • /
    • 2008
  • Gas hydrate has been paid attention to study for because: 1) it can be considered as a new energy resources; 2) one of reasons causing the instability of sea floor slope and 3) a factor to the climate change. Bottom simulating reflector (BSR) defined as seismic boundary between the gas hydrate and free gas zone has been considered as the most common evidence in the seismic reflection data for the gas hydrate exploration. BSR has several characteristics such as parallel to the sea bottom, high amplitude, reducing interval velocity between above and below BSR and reversing phase to the sea bottom. Moreover, instantaneous attribute properties such as amplitude envelop, instantaneous frequency, phase and first derivative of amplitude of seismic data from the complex analysis could be used to analyze properties of BSR those would be added to the certain properties of BSR in order to effectively find out the existence of BSR of the gas hydrate stability zone. The output of conventional seismic data processing for gas hydrate data set in Ulleung basin in the East sea of Korea will be used for complex analyses to indicate better BSR in the seismic reflection data. This result of this analysis implies that the BSR of the analyzed seismic profile is clearly located at the two ways time (TWT) of around 3.1 seconds.

  • PDF

Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

  • Kim, No-Hyu;Lee, Sang-Soon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.577-582
    • /
    • 2003
  • This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process.

Numerical Study on the Reflection of a Solitary Wave by a Vertical Wall Using the Improved Boussinesq Equation with Stokes Damping (고립파의 수직 벽면 반사와 Stokes 감쇠에 관한 개선된 부시네스크 방정식을 이용한 수치해석 연구)

  • Park, Jinsoo;Jang, Taek Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.64-71
    • /
    • 2022
  • In this paper, we simulate the collision of a solitary wave on a vertical wall in a uniform water channel and investigate the effect of damping on the amplitude attenuation. In order to take into account the damping effect, we introduce the Stokes damping whose dissipation is dependent on the velocity of wave motion on the surface of a thin layer of oil. That is, we use the improved Boussinesq equation with Stokes damping to describe the damped wave motion. Our work mainly focuses on the amplitude attenuation of a propagating solitary wave, which may depend on the Stokes damping together with the initial position and initial amplitude of the wave. We utilize the method of images and a powerful numerical tool (functional iteration method) for solving the improved Boussinesq equation, yielding an effective numerical simulation. This enables us to find the amplitudes of the incident wave and reflected one, whose ratio is a measure of the (wave) amplitude attenuation. Accordingly, we have shown that the reflection of a solitary wave by a vertical wall is dependent on not only the initial amplitude and position of a solitary but the Stokes damping.